Quantum harmonic analysis on spaces of analytic functions GPOTS 2024

Vishwa Dewage

Clemson University

Joint work with Matthew Dawson (CIMAT) Mishko Mitkovski (Clemson University) Gestur Ólafsson (LSU)

Spaces of analytic functions

• Let $\Omega \subset \mathbb{C}^n$ be a domain and let μ be a probability measure on Ω . Then $\mathcal{A}^2(\Omega,\mu)=\mathcal{O}(\Omega)\cap L^2(\Omega,\mu)$ is a RKHS. For $f\in\mathcal{A}^2(\Omega,\mu),$

$$
f(z)=\langle f,K_z\rangle, \ \ z\in\Omega.
$$

 $\bullet\,$ The Bergman projection $P:L^2(\Omega,\mu)\rightarrow {\cal A}^2(\Omega,\mu)$ is given by

$$
Pf(z)=\langle f,K_z\rangle.
$$

- Examples:
	- 1. The Bergman space $\mathcal{A}^2(\mathbb{B}^n)$

$$
K(w,z)=K_z(w)=\frac{1}{(1-\langle w,z\rangle)^{n+1}}\quad w,z\in\mathbb{B}^n,
$$

2. The Fock space $\mathcal{F}^2(\mathbb{C}^n)$ with $d\mu(z)=e^{-\pi|z|^2}dz$, $K_z(w)=e^{\pi\langle w,z\rangle}.$

Toeplitz algebra

 $\bullet\,$ For $a:\Omega\to\mathbb C,$ the Toeplitz operator $\, \mathcal T_a:\mathcal A^2(\Omega,\mu)\to\mathcal A^2(\Omega,\mu)\,$ is

 $T_a f(z) = P(a f)(z) = \langle af, K_z \rangle$

If $a\in L^\infty(\mathbb{B}^n)$, \mathcal{T}_a is a bounded operator with $\|\mathcal{T}_a\|\leq \|a\|_\infty.$

- \bullet The Toeplitz algebra $\mathfrak{T}(L^\infty)$ is the C^* -algebra generated by \mathcal{T}_a with $a\in L^\infty(\Omega).$
- (Xia 2015) Toeplitz operartors are dense in $\mathfrak{T}(L^{\infty})$ for both $\mathcal{A}^{2}(\mathbb{B}^{n})$ and $\mathcal{F}^{2}(\mathbb{C}^{n})$. \implies Q: How to approximate $S \in \mathfrak{T}(L^{\infty})$ by Toeplitz operators

Toeplitz algebra

 $\bullet\,$ For $a:\Omega\to\mathbb C,$ the Toeplitz operator $\, \mathcal T_a:\mathcal A^2(\Omega,\mu)\to\mathcal A^2(\Omega,\mu)\,$ is

 $T_a f(z) = P(a f)(z) = \langle af, K_z \rangle$

If $a\in L^\infty(\mathbb{B}^n)$, \mathcal{T}_a is a bounded operator with $\|\mathcal{T}_a\|\leq \|a\|_\infty.$

- \bullet The Toeplitz algebra $\mathfrak{T}(L^\infty)$ is the C^* -algebra generated by \mathcal{T}_a with $a\in L^\infty(\Omega).$
- (Xia 2015) Toeplitz operartors are dense in $\mathfrak{T}(L^{\infty})$ for both $\mathcal{A}^{2}(\mathbb{B}^{n})$ and $\mathcal{F}^{2}(\mathbb{C}^{n})$. \implies Q: How to approximate $S \in \mathfrak{T}(L^{\infty})$ by Toeplitz operators
- If $S \in \mathcal{L}(\mathcal{A}^2)$, the Berezin transform of S is given by:

$$
B(S)(z)=\langle Sk_z,k_z\rangle, \ z\in \Omega
$$

where $k_z=\frac{K_z}{\parallel K_z}$ $\frac{K_z}{\|K_z\|}$.

QHA setup

- A locally compact unimodular group G acts on Ω .
- An irreducible square-integrable projective unitary representation of G of the form:

$$
(\pi(g)f)(z) = j(g^{-1}, z)f(g^{-1}z), \quad \forall z \in \Omega, f \in \mathcal{A}^2(\Omega)
$$

where i is a cocycle.

QHA setup

- A locally compact unimodular group G acts on Ω .
- \bullet An irreducible square-integrable projective unitary representation of G of the form:

$$
(\pi(g)f)(z) = j(g^{-1},z)f(g^{-1}z), \quad \forall z \in \Omega, f \in \mathcal{A}^2(\Omega)
$$

where i is a cocycle.

- Examples:
	- $\mathcal{F}^2(\mathbb{C}^n)$, $G=\mathbb{C}^n$, Weyl representation
	- $A^2(\mathbb{B}^n)$, $G=SU(n,1)$ (matrices in $SL(n+1,\mathbb{C})$ that preserves the sesquilinear form $\langle z,w\rangle_{n,1} := -z_1\bar{w}_1 - \cdots - z_n\bar{w}_n + z_{n+1}\bar{w}_{n+1}$ $SU(n, 1)$ acts on \mathbb{B}^n by the fractional linear transformations given by

$$
\begin{bmatrix} A & v \\ w^t & c \end{bmatrix} \cdot z = \frac{Az+v}{w^tz+c}, \quad z \in \mathbb{B}^n.
$$

Then $\mathbb{B}^n = G/K$, where $K = U_n$ and π is the discrete series representation.

• If $\psi: G \to \mathbb{C}$ and $a: \mathbb{B}^n \to \mathbb{C}$, the convolution $\psi * a: \mathbb{B}^n \to \mathbb{C}$ is defined formally by

$$
(\psi * a)(z) := \int_G \psi(g)a(g^{-1}z) d\mu_G(g), \quad \forall z \in \mathbb{B}^n,
$$

 $d\mu_G$ is the Haar measure on G.

• The convolution is noncommutative. But if both a and ψ are radial functions on \mathbb{B}^n , $\psi*a=a*\psi$ (a is radial if $a(k^{-1}z)=a(z)$ for all $k\in\mathit{U}(n),\,z\in\mathbb{B}^n),$ i.e. $\,G/K$ is a commutative space.

Convolution of a function and an operator

 \bullet Translations of operators: For $S \in \mathcal{L}(\mathcal{A}^2)$, translation of S by $g \in G$ is given by

$$
L_g(S)=\pi(g)S\pi(g)^*.
$$

An operator S is radial if $L_k(S) = S$ for all $k \in U(n)$.

 $\bullet\,$ For $\psi:\mathsf{G}\to\mathbb{C}$ and $\mathsf{S}\in\mathcal{L}(\mathcal{A}^{2}),$ define the convolution $\psi\ast\mathsf{S}$ in weak sense by

$$
\psi * S := \int_G \psi(g)L_g(S) \ d\mu_G(g)
$$

Convolution of a function and an operator

 \bullet Translations of operators: For $S \in \mathcal{L}(\mathcal{A}^2)$, translation of S by $g \in G$ is given by

$$
L_g(S)=\pi(g)S\pi(g)^*.
$$

An operator S is radial if $L_k(S) = S$ for all $k \in U(n)$.

 $\bullet\,$ For $\psi:\mathsf{G}\to\mathbb{C}$ and $\mathsf{S}\in\mathcal{L}(\mathcal{A}^{2}),$ define the convolution $\psi\ast\mathsf{S}$ in weak sense by

$$
\psi * S := \int_G \psi(g)L_g(S) \ d\mu_G(g)
$$

• Toeplitz operators are convolutions: Let $\Phi = 1 \otimes \overline{1}$.

$$
T_a = a * \Phi.
$$

Convolution between two opertors

 $\bullet\,$ Let $\,S\in {\cal L}({\cal A}^2)\,$ and $\,A\,$ be trace class. <code>Then S $\ast\,A:\,G\to\mathbb{C}\,$ is given by $\,$ </code>

 $(S \ast A)(g) := \text{Tr}(SL_{\sigma}(A)) \quad \forall g \in G.$

Then $S * A \in L^{\infty}(G)$ and $||S * A||_{\infty} < ||S|| ||A||_1$.

 \bullet If $\mathcal{S}\in\mathcal{L}(\mathcal{A}^{2})$ and $\mathcal{A},\ \mathcal{B}$ are radial trace-class class operators

$$
(S*A)*B=(S*B)*A.
$$

Convolution between two opertors

 $\bullet\,$ Let $\,S\in {\cal L}({\cal A}^2)\,$ and $\,A\,$ be trace class. <code>Then S $\ast\,A:\,G\to\mathbb{C}\,$ is given by $\,$ </code>

 $(S \ast A)(g) := \text{Tr}(SL_{\sigma}(A)) \quad \forall g \in G.$

Then $S * A \in L^{\infty}(G)$ and $||S * A||_{\infty} < ||S|| ||A||_1$.

 \bullet If $\mathcal{S}\in\mathcal{L}(\mathcal{A}^{2})$ and $\mathcal{A},\ \mathcal{B}$ are radial trace-class class operators

$$
(S*A)*B=(S*B)*A.
$$

 $\bullet\,$ For $S\in\mathcal{L}(\mathcal{A}^{2}),$ the Berezin transform of S is given by

$$
B(S)=S\ast\Phi.
$$

(Joint work with Matthew Dawson, Mishko Mitkovski and Gestur Ólafsson)

- Introduce a new α -Berezin transform
- Characterize the radial Toeplitz algebra
- Discuss a Wiener's Tauberian theorem.
- Approximate Schatten-p operators by Toeplitz operators

Suarez's α -Berezin transform for the unit disc

• The α -Berezin transform: For $\alpha \in \mathbb{N}_0$,

$$
B_{\alpha}(S)(z)=C_{\alpha}(1-|z|^2)^2\sum_{m=0}^{\alpha}(-1)^m {\alpha \choose m}\langle S(p_mk_{z}^{\alpha}),p_mk_{z}^{\alpha}\rangle, \ \ z\in\mathbb{D}.
$$

where
$$
p_m(z) = z^m
$$
 and $k_z^{\alpha}(w) = \frac{(1-|z|^2)^{(n+1+\alpha)/2}}{(1-(w,z))^{n+1+\alpha}}$.

• $B_{\alpha}(\mathcal{T}_a) = B_{\alpha}(a) = \langle ak_{z}^{\alpha}, k_{z}^{\alpha} \rangle_{\alpha}.$

Suarez's α -Berezin transform for the unit disc

• The α -Berezin transform: For $\alpha \in \mathbb{N}_0$,

$$
B_{\alpha}(S)(z)=C_{\alpha}(1-|z|^2)^2\sum_{m=0}^{\alpha}(-1)^m {\alpha \choose m}\langle S(p_mk_{z}^{\alpha}),p_mk_{z}^{\alpha}\rangle, \ \ z\in \mathbb{D}.
$$

where
$$
p_m(z) = z^m
$$
 and $k_z^{\alpha}(w) = \frac{(1-|z|^2)^{(n+1+\alpha)/2}}{(1-\langle w,z\rangle)^{n+1+\alpha}}$.

•
$$
B_{\alpha}(T_a) = B_{\alpha}(a) = \langle ak_2^{\alpha}, k_2^{\alpha} \rangle_{\alpha}
$$
.

Conjecture: If $S \in \mathfrak{T}(L^{\infty})$ then $T_{B_{\alpha}(S)} \to S$ in operator norm as $\alpha \to \infty$.

- (Suarez 2005) A radial operator S is in the Toeplitz algebra iff $T_{B_0(S)} \to S$ in operator norm (unit disc).
- (Suarez 2004, 2007) $T_{B_{\alpha}(a)} \rightarrow T_a$ in operator norm.

A natural approximate identity for $L^1(\mathbb{B}^n,d\lambda)$

- \bullet The invariant measure λ on \mathbb{B}^n is given by $\ d\lambda(z)=\frac{1}{(1-|z|^2)^{n+1}}dz.$
- By the identification of functions on \mathbb{B}^n as functions on G , we get that

 $L^1(\mathbb{B}^n,d\lambda)\subset L^1(G).$

A natural approximate identity for $L^1(\mathbb{B}^n,d\lambda)$

- \bullet The invariant measure λ on \mathbb{B}^n is given by $\ d\lambda(z)=\frac{1}{(1-|z|^2)^{n+1}}dz.$
- By the identification of functions on \mathbb{B}^n as functions on G , we get that

 $L^1(\mathbb{B}^n,d\lambda)\subset L^1(G).$

• We have

$$
(\Phi * \Phi)(z) = C_0 (1 - |z|^2)^{n+1} =: \varphi(z) \ \ \forall z \in \mathbb{B}^n.
$$

 \bullet The functions φ_{α} given below, is a right-approximate identity in $L^1(\mathbb{B}^n,d\lambda)$:

$$
\varphi_{\alpha}(z)=C_{\alpha}(1-|z|^2)^{n+1+\alpha}, \quad \forall z\in\mathbb{B}^n.
$$

• We have $B_\alpha(a)=\langle ak_z^\alpha,k_z^\alpha\rangle=a*\varphi_\alpha.$

A new α -Berezin transform

• We define an operator Φ_{α} s.t.

$$
\Phi_{\alpha} * \Phi = \varphi_{\alpha}.
$$

Then Φ_{α} is a radial finite rank operator. Then $\text{Tr}(\Phi_{\alpha}) = 1$ but $\|\Phi_{\alpha}\|_1$ depends on α . $\bullet\,$ For $\alpha\in\mathbb{N}_0$ and $S\in\mathcal{L}(\mathcal{A}^{2}),$ we define

$$
\tilde{B}_{\alpha}(S)=S\ast\Phi_{\alpha}.
$$

Then $\tilde{B}_{\alpha}(S)\in L^{\infty}(\mathbb{B}^{n})$ and $\|\tilde{B}_{\alpha}(S)\|_{\infty}\leq \|S\|\|\Phi_{\alpha}\|_{1}.$

A new α -Berezin transform

• We define an operator Φ_{α} s.t.

$$
\Phi_{\alpha} * \Phi = \varphi_{\alpha}.
$$

Then Φ_{α} is a radial finite rank operator. Then $\text{Tr}(\Phi_{\alpha}) = 1$ but $\|\Phi_{\alpha}\|_1$ depends on α .

 $\bullet\,$ For $\alpha\in\mathbb{N}_0$ and $S\in\mathcal{L}(\mathcal{A}^{2}),$ we define

$$
\tilde{B}_{\alpha}(S)=S\ast\Phi_{\alpha}.
$$

Then $\tilde{B}_{\alpha}(S)\in L^{\infty}(\mathbb{B}^{n})$ and $\|\tilde{B}_{\alpha}(S)\|_{\infty}\leq \|S\|\|\Phi_{\alpha}\|_{1}.$

- $\widetilde{B}_{\alpha}(\mathcal{T}_a) = B_{\alpha}(a).$
- $\bullet~~B_{\beta}(\tilde{B}_{\alpha}(S))=B_{\alpha}(\tilde{B}_{\beta}(S)).$
- $\bullet\;$ $S\in\mathcal{L}(\mathcal{A}^{2})$ is a Toeplitz operator iff there is $C>0$ s.t. $\|\tilde{B}_{\alpha}(S)\|_{\infty}\leq C$ for all $\alpha\in\mathbb{N}_{0}.$

Q: Is $T_{\tilde{B}_{\alpha}(S)} \to S$ in operator norm as $\alpha \to \infty$ for $S \in \mathfrak{T}(L^{\infty})$.

Uniform continuity

- $a\in L^\infty(\Bbb B^n)$ is left-G-uniformly continuous if the map $G\to L^\infty(\Bbb B^n)$, $g\mapsto \ell_g$ a, is continuous w.r.t. $\|\cdot\|_{\infty}$.
- \bullet a on \mathbb{B}^n is right-G-uniformly continuous if the map $G\to L^\infty(G)$, $g\mapsto r_g$ a is continuous w.r.t. $\|\cdot\|_{\infty}$, where

$$
(r_g a)(h) = a(hg \cdot 0), \quad h \in G.
$$

• An operator $S\in{\cal L}({\cal A}^2)$ is **left-G-uniformly continuous** if the map $G\rightarrow{\cal L}({\cal A}^2),$ $g \mapsto L_g(S)$ is continuous w.r.t. operator norm.

Let $\mathcal{C}_{h,u}^{(L)}$ $\mathcal{C}_{b,u}^{(L)}(\mathbb{B}^{n}),\,\,\mathcal{C}_{b,u}^{(R)}$ $\mathcal{L}_{b,u}^{(R)}(\mathbb{B}^{n})$ and $\mathcal{C}_{b,u}^{(L)}$ $\mathcal{L}_{b,u}^{(L)}(\mathcal{A}^2)$ denote the C^* algebras of left and right uniformly continuous functions, and uniformly continuous operators.

Radial operators

Proposition (DDMO)

Let $\mathcal{S}\in\mathcal{L}(\mathcal{A}^{2})$ be a radial operator. Then $\varphi_{\alpha}\ast\mathcal{S}=T_{\tilde{\mathcal{B}}_{\alpha}(\mathcal{S})}$ and 1. $\varphi_{\alpha} * S \to S$ in strong operator topology 2. $\varphi_{\alpha} * S \to S$ in $\|\cdot\|$ if $S \in C_{b,u}^{(L)}$ $\mathcal{L}_{b,u}^{(L)}(\mathcal{A}^2)$. 3. $\varphi_{\alpha} * S \to S$ in $\|\cdot\|_{p}$ if $S \in \mathcal{S}^{p}(\mathcal{A}^{2})$.

Theorem (DDMÓ)

Radial Toeplitz algebra $\mathfrak{T}({L^\infty})^{\mathcal{R}$ ad can be characterized as

 $\mathfrak{T}(L^{\infty})^{\mathsf{Rad}} = \{ \textit{The algebra of all bounded uniformly continuous radial operators} \}$ $=\{$ radial $S\in\mathcal{L}(\mathcal{A}^{2})\mid\mathcal{T}_{\tilde{B}_{\alpha}(S)}\rightarrow S$ in operator norm. $\}$

Approximations

• $T_{B_0(a)} \rightarrow T_a$ in operator norm, because

$$
T_{B_\alpha(a)}=(a\ast\varphi_\alpha)\ast\Phi=a\ast(\varphi_\alpha\ast\Phi)\to a\ast\Phi.
$$

- Toeplitz algebra $\mathfrak{T}(L^{\infty})$ is generated by Toeplitz operators with bounded right-uniformly continuous symbols.
- Q: $\mathfrak{I}(L^{\infty})$ = "some algebra of right continuous operators"?.

Approximations

• $T_{B_0(a)} \to T_a$ in operator norm, because

$$
T_{B_{\alpha}(a)}=(a\ast\varphi_{\alpha})\ast\Phi=a\ast(\varphi_{\alpha}\ast\Phi)\rightarrow a\ast\Phi.
$$

- Toeplitz algebra $\mathfrak{T}(L^{\infty})$ is generated by Toeplitz operators with bounded right-uniformly continuous symbols.
- $Q: \mathfrak{T}(L^{\infty})=$ "some algebra of right continuous operators"?.

Proposition

Let $1 \leq p \leq \infty$. Then we have the following:

- $1.$ If $S\in L^p(\mathbb{B}^n,d\lambda)*\mathcal{S}^1(\mathcal{A}^2)$ then $\mathcal{T}_{\tilde{B}_\alpha(S)}\to S$ in Schatten-p norm.
- 2. If $S\in L^1(\mathbb{B}^n,d\lambda)*\mathcal{S}^p(\mathcal{A}^2)$ then $\mathcal{T}_{\tilde{B}_\alpha(S)}\to S$ in Schatten-p norm.
- 3. If $S \in L^1(\mathbb{B}^n, d\lambda) * C_{h,n}^{(L)}$ $\tilde{U}_{b,u}^{(L)}(\mathcal{A}^2)$ then $\mathcal{T}_{\tilde{B}_{\alpha}(S)}\rightarrow S$ in operator norm.
- 4. If $S\in L^\infty(\mathbb{B}^n)*\mathcal{S}^1(\mathcal{A}^2)$ then $\mathcal{T}_{\tilde{B}_\alpha(S)}\to S$ in operator norm.

QHA Wiener's Tauberian theorem

- A function $\psi\in L^p(\mathbb{B}^n,d\lambda)$ is $p\text{-cyclic}$ $(p\text{-}regular)$ if the translates of ψ span a dense subset of $L^p(\mathbb{B}^n,d\lambda)$.
- An operator $S\in\mathcal{S}^p(\mathcal{A}^2)$ is p -cyclic if translates of S spans a dense subset of $\mathcal{S}^p(\mathcal{A}^2).$

QHA Wiener's Tauberian theorem

- A function $\psi\in L^p(\mathbb{B}^n,d\lambda)$ is $p\text{-cyclic}$ $(p\text{-}regular)$ if the translates of ψ span a dense subset of $L^p(\mathbb{B}^n,d\lambda)$.
- An operator $S\in\mathcal{S}^p(\mathcal{A}^2)$ is p -cyclic if translates of S spans a dense subset of $\mathcal{S}^p(\mathcal{A}^2).$

Theorem (Wiener's Tauberian theorem for $L^p(G/K) = L^p(\mathbb{B}^n, d\lambda)$)

Let $1\leq p<\infty$ and let $\Psi\in\mathcal{S}^p(\mathcal{A}^2)$ be a radial operator. Then the following are equivalent: 1. Ψ is p-cyclic

2.
$$
S^p(\mathcal{A}^2)=\overline{L^1(\mathbb{B}^n,d\lambda)*\Psi}^{S^p}
$$

- 3. $S \mapsto S * \Psi$ is injective from $\mathcal{S}^q(\mathcal{A}^2) \to L^\infty(\mathbb{B}^n)$.
- 4. a \mapsto a $*$ Ψ is injective from $L^q(\mathbb{B}^n,d\lambda) \to \mathcal{L}(\mathcal{A}^2)$
- 5. $L^p(\mathbb{B}^n,d\lambda)=\overline{\mathcal{S}^1(\mathcal{A}^2)*\Psi}^{L^p}.$

Following is similar to (Luef,Skrettingland 18)

Theorem (Wiener's Tauberian theorem- part II)

Let $1\leq p<\infty$ and let $\Psi\in\mathcal{S}^{1}(\mathcal{A}^{2})$ be radial then the following are equivalent: 1. Ψ is p-cyclic

2.
$$
S^p(A^2) = \overline{L^p(\mathbb{B}^n, d\lambda) * \Psi}^{S^p}
$$

\n3. $S \mapsto S * \Psi$ is injective from $S^q(A^2) \to L^q(\mathbb{B}^n, d\lambda)$.
\n4. $a \mapsto a * \Psi$ is injective from $L^q(\mathbb{B}^n, d\lambda) \to S^q(A^2)$
\n5. $L^p(\mathbb{B}^n, d\lambda) = \overline{S^p(A^2) * \Psi}^{L^p}$.

Corollary

Let $1 \leq p < \infty$. Then

1.
$$
S^{p}(\mathcal{A}^{2}) = \overline{L^{p}(\mathbb{B}^{n}, d\lambda) * \Phi}^{S^{p}} = \overline{\{T_{\psi} \mid \psi \in L^{p}(\mathbb{B}^{n}, d\lambda)\}}^{S^{p}}
$$

2.
$$
L^{p}(\mathbb{B}^{n}, d\lambda) = \overline{S^{p}(\mathcal{A}^{2}) * \Phi}^{L^{p}} = \overline{\{B(S) \mid S \in S^{p}(\mathcal{A}^{2})\}}^{L^{p}}.
$$

Corollary

Let $1 \leq p < \infty$. Then

1.
$$
S^{p}(\mathcal{A}^{2}) = \overline{L^{p}(\mathbb{B}^{n}, d\lambda) * \Phi}^{S^{p}} = \overline{\{T_{\psi} \mid \psi \in L^{p}(\mathbb{B}^{n}, d\lambda)\}}^{S^{p}}
$$

2.
$$
L^{p}(\mathbb{B}^{n}, d\lambda) = \overline{S^{p}(\mathcal{A}^{2}) * \Phi}^{L^{p}} = \overline{\{B(S) \mid S \in S^{p}(\mathcal{A}^{2})\}}^{L^{p}}.
$$

Theorem (DDMÓ)

If $S \in \mathcal{S}^p(\mathcal{A}^2)$ then $\mathcal{T}_{\tilde{B}_\alpha(S)} \to S$ in Schatten-p norm.

Part II: Gelfand theory of radial Toeplitz algebra on $\mathcal{F}^2(\mathbb{C}^n)$.

(Joint work with Mishko Mitkovski)

- Domain of the Laplacian is dense in $\mathfrak{T}(L^{\infty})$.
- Revisit Gelfand theory of $\mathfrak{T}(L^{\infty})^{U(n)}$
	- \bullet (Grudsky, Vasilevski 2002): $\mathfrak{I}(L^{\infty})^{U(n)}$ is commutative and the eigenvalue sequences of radial Toeplitz operators on $\mathcal{F}^2(\mathbb{C})$ are of the form

$$
\gamma_a(m)=\frac{1}{m!}\int_0^\infty a(\sqrt{r})r^me^{-r}dr.
$$

 \bullet (Esmeral, Maximenko 2016): Radial Toeplitz operators are dense in $\mathfrak{T}(L^{\infty})^{U(n)}$ and $\mathfrak{T}(L^\infty)^{U(n)}$ is isometrically isomorphic to the C^* -algebra $\mathcal{C}_{b,u}(\mathbb{N}_0,\rho)$ of bounded sequences uniformly continuous w.r.t. the square-root metric $\rho : \mathbb{N}_0 \times \mathbb{N}_0 \to [0, \infty)$ given by

$$
\rho(m, m') = |\sqrt{m} - \sqrt{m'}|.
$$

Operator Laplacian

• Define the *domain of the Laplacian D*^{\land} by

$$
D_{\Delta}:=\{S\in \mathcal{L}(\mathcal{A}^2)\mid \exists\, \mathcal{T}\in \mathcal{L}(\mathcal{A}^2)\,\,\text{s.t.}\,\,\,\Delta B(S)=B(\mathcal{T})\}.
$$

Define the *Laplacian of operators* $\Delta: D_\Delta \to \mathcal{L}(\mathcal{A}^2)$ *,* by

$$
\Delta S:=7
$$

for $S \in D_{\Delta}$, where T is the operator that satisfies $\Delta B(S) = B(T)$. (Suarez 08). • $T_a \in D_{\Lambda}$.

Operator Laplacian

• Define the *domain of the Laplacian D*^{\land} by

$$
D_{\Delta}:=\{S\in \mathcal{L}(\mathcal{A}^2)\mid \exists\, \mathcal{T}\in \mathcal{L}(\mathcal{A}^2)\,\,\text{s.t.}\,\,\,\Delta B(S)=B(\mathcal{T})\}.
$$

Define the *Laplacian of operators* $\Delta: D_\Delta \to \mathcal{L}(\mathcal{A}^2)$ *,* by

$$
\Delta S:=T
$$

for $S \in D_{\Delta}$, where T is the operator that satisfies $\Delta B(S) = B(T)$. (Suarez 08). • $T_a \in D_{\Lambda}$.

Theorem (D,Mitkovski 24)

$$
\mathfrak{T}(L^{\infty})=\overline{D_{\Delta}}
$$

Proof

• Let
$$
\varphi_t(z) = \frac{1}{(\pi t)^n} e^{-\frac{1}{t}|z|^2}
$$
. Then for $a \in L^{\infty}(\mathbb{B}^n)$,

$$
\Delta(\varphi_t * a) = \frac{d}{dt}(\varphi_t * a).
$$

• For
$$
S \in \mathcal{L}(\mathcal{A}^2)
$$
,
\n
$$
\Delta(\varphi_t * S) = \frac{d}{dt}(\varphi_t * S) := \left(\frac{d}{dt}\varphi_t\right) * S
$$
\n•
\n
$$
\varphi_t * S = \varphi_1 * S - \int_t^1 \frac{d}{dy}(\varphi_y * S) dy
$$

Radial Toeplitz algebra

 \bullet (DM 2023,2024) radial operators := $\mathcal{L}(\mathcal{F}^2)^{U(n)}$

$$
\mathfrak{T}(L^{\infty})^{U(n)} = \mathfrak{T}(L^{\infty}) \cap \mathcal{L}(\mathcal{F}^2)^{U(n)} = \overline{\{T_a \mid a \in L^{\infty}(\mathbb{B}^n) \text{ is radial } \}} = \overline{D_{\Delta} \cap \mathcal{L}(\mathcal{F}^2)^{U(n)}}
$$

 \bullet Let Γ : $\mathcal{L}(\mathcal{F}^2)^{U(n)}\to \ell^\infty(\mathbb{N}_0)$ be the spectral map, and d_Δ the image of $D_\Delta\cap\mathcal{L}(\mathcal{F}^2)^{U(n)}$ under Γ.

$$
d_{\Delta} = \Big\{\{x_k\} \in \ell^{\infty}(\mathbb{N}_0) \mid \exists C > 0 \text{ s.t. } |\Delta^2 x_k| \leq \frac{C}{k+1} \forall k\Big\}, \quad \Delta x_k = x_{k+1} - x_k.
$$

$\overline{d_{\Delta}} = \mathcal{C}_{b,u}(\mathbb{N}_0,\rho)$

• For $\sigma \in C_{b,\mu}(\mathbb{N}_0,\rho)$, extension f^+_σ of σ to \mathbb{R}_+ :

$$
f_{\sigma}^+(x) = \sigma(k) + (\sigma(k+1) - \sigma(k)) \frac{\sqrt{x} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}}.
$$

• Define $f_{\sigma} \in \mathcal{C}_{b,u}(\mathbb{R})$ by

$$
f_{\sigma}(x)=f_{\sigma}^+(x^2); \quad x\in\mathbb{R}.
$$

$d_{\Delta} = \mathcal{C}_{b,u}(\mathbb{N}_0,\rho)$

• For $\sigma \in C_{b,\mu}(\mathbb{N}_0,\rho)$, extension f^+_σ of σ to \mathbb{R}_+ :

$$
f_{\sigma}^+(x) = \sigma(k) + (\sigma(k+1) - \sigma(k)) \frac{\sqrt{x} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}}.
$$

• Define $f_{\sigma} \in \mathcal{C}_{b,u}(\mathbb{R})$ by

$$
f_{\sigma}(x)=f_{\sigma}^+(x^2); \quad x\in\mathbb{R}.
$$

- $\mathcal{C}_{b,u}(\mathbb{N}_0,\rho) \to \mathcal{C}_{b,u}(\mathbb{R}), \sigma \mapsto f_{\sigma}$ is an isometry.
- $\mathcal{C}_{b,u}(\mathbb{R}) \to \mathcal{C}_{b,u}(\mathbb{N}_0, \rho), \ f \mapsto \sigma_f$, where $\sigma_f(k) = f(k)$ \sqrt{k}), $n \in \mathbb{N}_0$, is a contraction.
- By MVT for divided differences, if f has a bounded sencond derivative then f_{σ} is in d_{Δ} . And such functions are dense in $\mathcal{C}_{b,u}(\mathbb{R})$.

Thank you!

- F R. Fulsche, Correspondence theory on p-Fock spaces with applications to Toeplitz algebras, J. Funct. Anal. 279 (2020), no.7, 108661, 41 pp.
- F F. Luef, E. Skrettingland Convolutions for localization operators, J. Math. Pures Appl. 118 (2018), no. 9, 288–316.
- F D. Suarez, Approximation and symbolic calculus for Toeplitz algebras on the Bergman space, Revista Matemática Iberoamericana, no. 2, 563-610.
- F D. Suarez, Approximation and symbolic calculus for Toeplitz algebras on the Bergman space, Revista Matemática Iberoamericana, no. 2, 563-610.
- F D. Suarez, The eigenvalues of limits of radial Toeplitz operators Bull. London Math. Soc. 40 (2008), pp 631-641.
- Ħ R. Werner, Quantum harmonic analysis on phase space, J. Math. Phys. 25 (1984), no. 5, 1404–1411.