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Gestur Ólafsson (LSU)

August 8, 2024

1 / 23



Spaces of analytic functions

• Let Ω ⊂ Cn be a domain and let µ be a probability measure on Ω. Then
A2(Ω, µ) = O(Ω) ∩ L2(Ω, µ) is a RKHS. For f ∈ A2(Ω, µ),

f (z) = ⟨f ,Kz⟩, z ∈ Ω.

• The Bergman projection P : L2(Ω, µ) → A2(Ω, µ) is given by

Pf (z) = ⟨f ,Kz⟩.

• Examples:

1. The Bergman space A2(Bn)

K (w , z) = Kz(w) =
1

(1− ⟨w , z⟩)n+1
w , z ∈ Bn,

2. The Fock space F2(Cn) with dµ(z) = e−π|z|2dz , Kz(w) = eπ⟨w ,z⟩.
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Toeplitz algebra

• For a : Ω → C, the Toeplitz operator Ta : A2(Ω, µ) → A2(Ω, µ) is

Taf (z) = P(af )(z) = ⟨af ,Kz⟩

If a ∈ L∞(Bn), Ta is a bounded operator with ∥Ta∥ ≤ ∥a∥∞.

• The Toeplitz algebra T(L∞) is the C ∗-algebra generated by Ta with a ∈ L∞(Ω).

• (Xia 2015) Toeplitz operartors are dense in T(L∞) for both A2(Bn) and F2(Cn).
=⇒ Q: How to approximate S ∈ T(L∞) by Toeplitz operators

• If S ∈ L(A2), the Berezin transform of S is given by:

B(S)(z) = ⟨Skz , kz⟩, z ∈ Ω

where kz = Kz
∥Kz∥ .
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QHA setup

• A locally compact unimodular group G acts on Ω.

• An irreducible square-integrable projective unitary representation of G of the form:

(π(g)f )(z) = j(g−1, z)f (g−1z), ∀z ∈ Ω, f ∈ A2(Ω)

where j is a cocycle.

• Examples:

– F2(Cn), G = Cn, Weyl representation
– A2(Bn), G = SU(n, 1) (matrices in SL(n + 1,C) that preserves the sesquilinear form

⟨z ,w⟩n,1 := −z1w̄1 − · · · − znw̄n + zn+1w̄n+1)
SU(n, 1) acts on Bn by the fractional linear transformations given by[

A v
w t c

]
· z =

Az + v

w tz + c
, z ∈ Bn.

Then Bn = G/K , where K = Un and π is the discrete series representation.
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Convolutions of functions on Bn

• If ψ : G → C and a : Bn → C, the convolution ψ ∗ a : Bn → C is defined formally by

(ψ ∗ a)(z) :=
∫
G
ψ(g)a(g−1z) dµG (g), ∀z ∈ Bn,

dµG is the Haar measure on G .

• The convolution is noncommutative. But if both a and ψ are radial functions on Bn,
ψ ∗ a = a ∗ ψ (a is radial if a(k−1z) = a(z) for all k ∈ U(n), z ∈ Bn), i.e. G/K is a
commutative space.
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Convolution of a function and an operator

• Translations of operators: For S ∈ L(A2), translation of S by g ∈ G is given by

Lg (S) = π(g)Sπ(g)∗.

An operator S is radial if Lk(S) = S for all k ∈ U(n).

• For ψ : G → C and S ∈ L(A2), define the convolution ψ ∗ S in weak sense by

ψ ∗ S :=

∫
G
ψ(g)Lg (S) dµG (g)

• Toeplitz operators are convolutions: Let Φ = 1⊗ 1̄.

Ta = a ∗ Φ.
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Convolution between two opertors

• Let S ∈ L(A2) and A be trace class. Then S ∗ A : G → C is given by

(S ∗ A)(g) := Tr(SLg (A)) ∀g ∈ G .

Then S ∗ A ∈ L∞(G ) and ∥S ∗ A∥∞ ≤ ∥S∥∥A∥1.
• If S ∈ L(A2) and A, B are radial trace-class class operators

(S ∗ A) ∗ B = (S ∗ B) ∗ A.

• For S ∈ L(A2), the Berezin transform of S is given by

B(S) = S ∗ Φ.
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Part I: Approximations by Toeplitz operators on A2(Bn)

(Joint work with Matthew Dawson, Mishko Mitkovski and Gestur Ólafsson)

• Introduce a new α-Berezin transform

• Characterize the radial Toeplitz algebra

• Discuss a Wiener’s Tauberian theorem.

• Approximate Schatten-p operators by Toeplitz operators
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Suarez’s α-Berezin transform for the unit disc

• The α-Berezin transform: For α ∈ N0,

Bα(S)(z) = Cα(1− |z |2)2
α∑

m=0

(−1)m
(
α

m

)
⟨S(pmkαz ), pmkαz ⟩, z ∈ D.

where pm(z) = zm and kαz (w) = (1−|z|2)(n+1+α)/2

(1−⟨w ,z⟩)n+1+α .

• Bα(Ta) = Bα(a) = ⟨akαz , kαz ⟩α.

Conjecture: If S ∈ T(L∞) then TBα(S) → S in operator norm as α→ ∞.

• (Suarez 2005) A radial operator S is in the Toeplitz algebra iff TBα(S) → S in operator
norm (unit disc).

• (Suarez 2004, 2007) TBα(a) → Ta in operator norm.
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A natural approximate identity for L1(Bn, dλ)

• The invariant measure λ on Bn is given by dλ(z) = 1
(1−|z|2)n+1 dz .

• By the identification of functions on Bn as functions on G , we get that

L1(Bn, dλ) ⊂ L1(G ).

• We have
(Φ ∗ Φ)(z) = C0(1− |z |2)n+1 =: φ(z) ∀z ∈ Bn.

• The functions φα given below, is a right-approximate identity in L1(Bn, dλ):

φα(z) = Cα(1− |z |2)n+1+α, ∀z ∈ Bn.

• We have Bα(a) = ⟨akαz , kαz ⟩ = a ∗ φα.
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A new α-Berezin transform

• We define an operator Φα s.t.
Φα ∗ Φ = φα.

Then Φα is a radial finite rank operator. Then Tr(Φα) = 1 but ∥Φα∥1 depends on α.

• For α ∈ N0 and S ∈ L(A2), we define

B̃α(S) = S ∗ Φα.

Then B̃α(S) ∈ L∞(Bn) and ∥B̃α(S)∥∞ ≤ ∥S∥∥Φα∥1.

• B̃α(Ta) = Bα(a).

• Bβ(B̃α(S)) = Bα(B̃β(S)).

• S ∈ L(A2) is a Toeplitz operator iff there is C > 0 s.t. ∥B̃α(S)∥∞ ≤ C for all α ∈ N0.

Q: Is TB̃α(S)
→ S in operator norm as α→ ∞ for S ∈ T(L∞).
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Uniform continuity

• a ∈ L∞(Bn) is left-G -uniformly continuous if the map G → L∞(Bn), g 7→ ℓga, is
continuous w.r.t. ∥ · ∥∞.

• a on Bn is right-G -uniformly continuous if the map G → L∞(G ), g 7→ rga is
continuous w.r.t. ∥ · ∥∞, where

(rga)(h) = a(hg · 0), h ∈ G .

• An operator S ∈ L(A2) is left-G -uniformly continuous if the map G → L(A2),
g 7→ Lg (S) is continuous w.r.t. operator norm.

Let C
(L)
b,u (B

n), C
(R)
b,u (B

n) and C
(L)
b,u (A

2) denote the C∗ algebras of left and right uniformly
continuous functions, and uniformly continuous operators.
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Radial operators

Proposition (DDMÓ)

Let S ∈ L(A2) be a radial operator. Then φα ∗ S = TB̃α(S)
and

1. φα ∗ S → S in strong operator topology

2. φα ∗ S → S in ∥ · ∥ if S ∈ C
(L)
b,u (A

2).

3. φα ∗ S → S in ∥ · ∥p if S ∈ Sp(A2).

Theorem (DDMÓ)

Radial Toeplitz algebra T(L∞)Rad can be characterized as

T(L∞)Rad = {The algebra of all bounded uniformly continuous radial operators}
= {radial S ∈ L(A2) | TB̃α(S)

→ S in operator norm.}
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Approximations

• TBα(a) → Ta in operator norm, because

TBα(a) = (a ∗ φα) ∗ Φ = a ∗ (φα ∗ Φ) → a ∗ Φ.

• Toeplitz algebra T(L∞) is generated by Toeplitz operators with bounded right-uniformly
continuous symbols.

Q: T(L∞)= ”some algebra of right continuous operators”?.

Proposition

Let 1 ≤ p <∞. Then we have the following:

1. If S ∈ Lp(Bn, dλ) ∗ S1(A2) then TB̃α(S)
→ S in Schatten-p norm.

2. If S ∈ L1(Bn, dλ) ∗ Sp(A2) then TB̃α(S)
→ S in Schatten-p norm.

3. If S ∈ L1(Bn, dλ) ∗ C (L)
b,u (A

2) then TB̃α(S)
→ S in operator norm.

4. If S ∈ L∞(Bn) ∗ S1(A2) then TB̃α(S)
→ S in operator norm.
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QHA Wiener’s Tauberian theorem

• A function ψ ∈ Lp(Bn, dλ) is p-cyclic (p-regular) if the translates of ψ span a dense
subset of Lp(Bn, dλ).

• An operator S ∈ Sp(A2) is p-cyclic if translates of S spans a dense subset of Sp(A2).

Theorem (Wiener’s Tauberian theorem for Lp(G/K ) = Lp(Bn, dλ))

Let 1 ≤ p <∞ and let Ψ ∈ Sp(A2) be a radial operator. Then the following are equivalent:

1. Ψ is p-cyclic

2. Sp(A2) = L1(Bn, dλ) ∗ΨSp

3. S 7→ S ∗Ψ is injective from Sq(A2) → L∞(Bn).

4. a 7→ a ∗Ψ is injective from Lq(Bn, dλ) → L(A2)

5. Lp(Bn, dλ) = S1(A2) ∗ΨLp

.
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Following is similar to (Luef,Skrettingland 18)

Theorem (Wiener’s Tauberian theorem- part II)

Let 1 ≤ p <∞ and let Ψ ∈ S1(A2) be radial then the following are equivalent:

1. Ψ is p-cyclic

2. Sp(A2) = Lp(Bn, dλ) ∗ΨSp

3. S 7→ S ∗Ψ is injective from Sq(A2) → Lq(Bn, dλ).

4. a 7→ a ∗Ψ is injective from Lq(Bn, dλ) → Sq(A2)
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Consequences

Corollary

Let 1 ≤ p <∞. Then

1. Sp(A2) = Lp(Bn, dλ) ∗ ΦSp

= {Tψ | ψ ∈ Lp(Bn, dλ)}S
p

2. Lp(Bn, dλ) = Sp(A2) ∗ ΦLp

= {B(S) | S ∈ Sp(A2)}L
p

.

Theorem (DDMÓ)

If S ∈ Sp(A2) then TB̃α(S)
→ S in Schatten-p norm.
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Part II: Gelfand theory of radial Toeplitz algebra on F2(Cn).

(Joint work with Mishko Mitkovski)

• Domain of the Laplacian is dense in T(L∞).

• Revisit Gelfand theory of T(L∞)U(n)

• (Grudsky, Vasilevski 2002): T(L∞)U(n) is commutative and the eigenvalue sequences of
radial Toeplitz operators on F2(C) are of the form

γa(m) =
1

m!

∫ ∞

0

a(
√
r)rme−rdr .

• (Esmeral, Maximenko 2016): Radial Toeplitz operators are dense in T(L∞)U(n) and
T(L∞)U(n) is isometrically isomorphic to the C∗-algebra Cb,u(N0, ρ) of bounded sequences
uniformly continuous w.r.t. the square-root metric ρ : N0 × N0 → [0,∞) given by

ρ(m,m′) = |
√
m −

√
m′|.
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Operator Laplacian

• Define the domain of the Laplacian D∆ by

D∆ := {S ∈ L(A2) | ∃T ∈ L(A2) s.t. ∆B(S) = B(T )}.

Define the Laplacian of operators ∆ : D∆ → L(A2), by

∆S := T

for S ∈ D∆, where T is the operator that satisfies ∆B(S) = B(T ). (Suarez 08).

• Ta ∈ D∆.

Theorem (D,Mitkovski 24)

T(L∞) = D∆

19 / 23



Operator Laplacian

• Define the domain of the Laplacian D∆ by

D∆ := {S ∈ L(A2) | ∃T ∈ L(A2) s.t. ∆B(S) = B(T )}.

Define the Laplacian of operators ∆ : D∆ → L(A2), by

∆S := T

for S ∈ D∆, where T is the operator that satisfies ∆B(S) = B(T ). (Suarez 08).

• Ta ∈ D∆.

Theorem (D,Mitkovski 24)

T(L∞) = D∆

19 / 23



Proof

• Let φt(z) =
1

(πt)n e
− 1

t
|z|2 . Then for a ∈ L∞(Bn),

∆(φt ∗ a) =
d

dt
(φt ∗ a).

• For S ∈ L(A2),

∆(φt ∗ S) =
d

dt
(φt ∗ S) :=

( d

dt
φt

)
∗ S

•

φt ∗ S = φ1 ∗ S −
∫ 1

t

d

dy
(φy ∗ S) dy

20 / 23



Radial Toeplitz algebra

• (DM 2023,2024) radial operators := L(F2)U(n)

T(L∞)U(n) = T(L∞) ∩ L(F2)U(n) = {Ta | a ∈ L∞(Bn) is radial } = D∆ ∩ L(F2)U(n)

• Let Γ : L(F2)U(n) → ℓ∞(N0) be the spectral map, and d∆ the image of D∆ ∩ L(F2)U(n)

under Γ.

d∆ =
{
{xk} ∈ ℓ∞(N0) | ∃C > 0 s.t. |∆2xk | ≤

C

k + 1
∀k

}
, ∆xk = xk+1 − xk .
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d∆ = Cb,u(N0, ρ)

• For σ ∈ Cb,u(N0, ρ), extension f +σ of σ to R+:

f +σ (x) = σ(k) + (σ(k + 1)− σ(k))

√
x −

√
k

√
k + 1−

√
k
.

• Define fσ ∈ Cb,u(R) by
fσ(x) = f +σ (x2); x ∈ R.

• Cb,u(N0, ρ) → Cb,u(R), σ 7→ fσ is an isometry.

• Cb,u(R) → Cb,u(N0, ρ), f 7→ σf , where σf (k) = f (
√
k), n ∈ N0, is a contraction.

• By MVT for divided differences, if f has a bounded sencond derivative then fσ is in d∆.
And such functions are dense in Cb,u(R).

Thank you!
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