

Joint measurement of quasi-free observables in phase space

- Jukka Kiukas Aberystwyth University, UK
- Joint work with Jussi Schultz (Turku, Finland) and R. F. Werner (LUH)
 - Workshop on Quantum Harmonic Analysis August 2024 Hannover

Overview

- General concepts
 - Quantum observables and their joint measurability
 - The relevant case: phase space localisation
 - Implications of covariance
- Phase space setting
 - Quasi-free (covariant) observables
 - Joint measurability of several quasi-free observables
 - A necessary condition for quadratures

Origin of the joint measurability problem

Goes back to the Uncertainty Principle (Heisenberg¹):

Some physical "observables" cannot be simultaneously measured (with arbitrary precision).

- Traditional mathematical setting:
 - Observables are self-adjoint operators, or collections of orthogonal projections (spectral theorem)
 - Observables are jointly measurable iff they commute.
- This setting is not sufficient for quantum information purposes!

1) W. Heisenberg Z. Phys. 43 172–198 (1927).

Modern formulation of quantum measurements

- Based on generalised observables collections of positive operators, or "effect cones" in probabilistic theories (about physical systems).
- Originated¹ (in the 1960s) within the statistical "operational / empiricist" interpretation and axiomatisation of quantum mechanics^{1,2}.
- Developed subsequently in infinite-dimensional settings including CCR and quantum harmonic analysis².
- Currently (since ~ 10 years) used extensively in quantum information community, in finite-dimensional setting.
- der Quantenmechanik durch Hauptsaetze des Messens, Lecture Notes in Physics 4, Springer 1970. North-Holland Series in Statistics and Probability, Vol. 1, North-Holland 1982; E. B. Davies, Quantum Theory of Open Systems, Academic Press, 1976; P. Busch, M. Grabowski, P. J. Lahti, Operational quantum physics,
- 1) G. Ludwig, Deutung des Begriffs "physikalische Theorie" und axiomatische Grundlegung der Hilbertraumstruktur 2) R. Werner, J. Math. Phys. 25 1404 (1984); A. S. Holevo, Probabilistic and statistical aspects of quantum theory, LNPMGR, vol 31, Springer 1995.

Probabilistic framework of measurements

- Repeated preparation of a "system" defines a state ρ .
- Observable E with outcomes $x \in \mathcal{X}$ is defined by empirical probabilities $\mathbb{P}(x \in X | \rho, \mathsf{E}) \text{ for } X \subset \mathcal{X}.$
- A probabilistic theory gives a model $\mathbb{P}(x \in X | \rho, \mathsf{E}) = \langle \mathsf{E}(X), \rho \rangle$

• $\langle \mathcal{V}^*, \mathcal{V} \rangle$ is a dual pair of order unit & base normed Banach spaces

• $E(X) \in [0,\mathbb{I}] \subset \mathscr{V}^*$ (unit interval, "effects"), $\rho \in S \subset \mathscr{V}$ (states)

Quantum observables – definition

- An observable extracts classical information from a quantum system.
 - Classical outcomes: \mathscr{X} a locally compact Hausdorff space
 - Quantum system: \mathcal{H} a complex separable Hilbert space
- <u>Observable</u>: a weak-* σ -additive measure $E: \mathscr{F}(\mathscr{X}) \to \mathscr{B}(\mathscr{H}_+)$ with $E(\mathcal{X}) = \mathbb{I}$. $(\mathcal{F}(\mathcal{X}) = \text{Borel } \sigma\text{-algebra.})$ positive operators
 - If E is measured on a quantum state $\rho \in \mathscr{B}(\mathscr{H})_* = \mathscr{T}(\mathscr{H})$, then
 - $\mathbb{P}(x \in X | \rho, \mathsf{E}) = \langle \rho, \mathsf{E}(X) \rangle = \operatorname{tr}[\rho \mathsf{E}(X)]$
 - is the probability of getting outcome in a set $X \in \mathscr{F}(\mathscr{X})$.

Observables – algebraic "channel" picture

- An observable $E: \mathscr{F}(\mathscr{X}) \to \mathscr{B}_{+}(\mathscr{H})$ defines a $\Phi_{F} \in \mathscr{C}(\mathscr{X}, \mathscr{H})$, $\Phi_{\mathsf{E}}(f) = \int f(x)\mathsf{E}(dx) \quad \text{(weak-* convergent integral).}$
- Conversely, let $\Phi \in \mathscr{C}(\mathscr{X}, \mathscr{H})$ be s.t. $\Phi(\infty) = 0$ where
 - $\Phi(\infty) = \inf\{\Phi(1-f) \mid f \in C_c(\mathcal{X}), 0 \le f \le 1\} \quad \text{("weight at infinity" [1])}.$

[1] R. F. Werner, Quant. Inform. Comput. 4, 546–562 (2004)

• Let $\mathscr{C}(\mathscr{X}, \mathscr{H}) = \{ \Phi : C_h(\mathscr{X}) \to \mathscr{B}(\mathscr{H}) \mid \Phi \text{ bdd positive linear, } \Phi(1) = \mathbb{I} \}$

Then there is a unique observable $E: \mathscr{F}(\mathscr{X}) \to \mathscr{B}_+(\mathscr{H})$ such that $\Phi = \Phi_F$.

Joint measurability — conceptual idea

- Can a given pair of observables E₁, E₂ be simulated by a single joint observable G?
- The outcome distribution of G should be a joint probability distribution for the distributions of E_1, E_2 in every state.
- In quantum theory joint observables do not exist for every pair E_1, E_2 .

Joint measurability – definition

• Definition: Observables $E_i : \mathscr{F}(\mathscr{X}_i) \to \mathscr{B}_+(\mathscr{H}), i = 1, ..., J$ are jointly <u>measurable</u> if there is an observable $G: \mathcal{F}(\mathcal{X}_1 \times \cdots \times \mathcal{X}_I) \to \mathcal{B}_+(\mathcal{H})$ s.t. J, (

$$\Phi_{\mathsf{E}_i} = \Phi_{\mathsf{G}} \circ \Pi_i \text{ for all } i = 1, \dots$$

where $\Pi_i : C_h(\mathcal{X}_i) \to C_h(\mathcal{X}_1 \times \cdots \times \mathcal{X}_I)$ is the canonical injection.

- If E_i are spectral measures, they are jointly measurable iff they commute. A joint observable is $G(X_1 \times \cdots \times X_I) = E_1(X_1) \cdots E_I(X_I) \ge 0, X_i \in \mathcal{F}(\mathcal{X}_i).$
- In general, commutativity is sufficient but not necessary for joint measurability.

Basic case: "mixed state localisation" of position-momentum (or time-frequency):

$$\mathbf{G}(Z) = \chi_Z * T$$

- Integrating over momentum gives a noisy (convolved) position observable $\mu_{\rho} * Q$ with $\mu_T(X) = \operatorname{tr}[T\mathsf{P}(-X)]$
- Similarly, integrating over position gives a noisy momentum $\nu_T * P$.
- So the mixed state localisation defines a joint observable for $\mu_T * Q$ and $\nu_T * P$.

- Generalisation: multiple directions
 - Look at multiple observables corresponding to arbitrary directions in phase space
 - These are used in physics, say, for state tomography in quantum optics
 - Related to e.g. Radon transform
 - The joint measurability problem now corresponds to localisation in a higher dimensional "hybrid" phase space with degenerate symplectic form

Covariant joint measurability

- Let an amenable semigroup S act by
 - anti-homomorphisms $s \mapsto \alpha_s^i \in \mathscr{C}(\mathscr{X}_i)$ satisfying $\alpha_s^0 \circ \Pi_i = \Pi_i \circ \alpha_s^i$;
 - a homomorphism $s \mapsto \alpha_s \in \mathscr{C}(\mathscr{H})$ where each α_s is weak-* continuous.
- Call $\Phi \in \mathscr{C}(\mathscr{X}_i, \mathscr{H})$ covariant if $\alpha_s \circ \Phi \circ \alpha_s^l = \Phi$ for all $s \in S$.
- Thm: Let $\Phi_0 \in \mathscr{C}(\mathscr{X}_0, \mathscr{H})$. If $\Phi_0 \circ \Pi_i \in \mathscr{C}(\mathscr{X}_i, \mathscr{H})$ is covariant for each i = 1, ..., J, then there is a covariant $\Phi \in \mathscr{C}(\mathscr{X}_0, \mathscr{H})$ s.t. $\Phi \circ \Pi_i = \Phi_0 \circ \Pi_i$ for each *i*. (Proof sketch: use [1] with suitable weak-* topology.)

• Denote $\mathscr{C}(\mathscr{H}) = \{ \Phi : \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H}) \mid \Phi \text{ (completely) positive linear, } \Phi(\mathbb{I}) = \mathbb{I} \},\$ $\mathscr{X}_0 = \mathscr{X}_1 \times \cdots \times \mathscr{X}_J, \Pi_0 = \mathrm{Id}_{C_k(\mathscr{X}_0)}, \Pi_i : C_b(\mathscr{X}_i) \to C_b(\mathscr{X}_0)$ canonical injections.

[1] M. M. Day, "Fixed-point theorems for compact convex sets" Illinois J. Math. 5 585-590, (1961)

Covariant joint measurability

observables, then they have a covariant joint observable $\mathsf{G}: \mathscr{F}(\mathscr{X}_1 \times \cdots \times \mathscr{X}_I) \to \mathscr{B}_+(\mathscr{H}).$

hence $\Phi = \Phi_G$ for some observable G.

• This result generalises [1] which was based on the ideas from [2,3]

[1] C. Carmeli, T. Heinonen, A. Toigo, J. Phys. A: Math. Gen. 38 5253 (2005) [2] P. Busch. Internat. J. Theoret. Phys. 24 63–92 (1985) [3] R. F. Werner, Quant. Inform. Comput. 4, 546–562 (2004).

- **Thm**: If $E_i : \mathscr{F}(\mathscr{X}_i) \to \mathscr{B}_+(\mathscr{H}), i = 1, ..., J$ are covariant jointly measurable

 - Proof sketch: Now $\Phi \circ \Pi_i = \Phi_{\mathsf{E}_i}$ for a covariant $\Phi \in \mathscr{C}(\mathscr{X}_0, \mathscr{H})$ [by the preceding Thm]. Additionally $\Phi_{E_i}(\infty) = 0$ for all i, which implies $\Phi(\infty) = 0$,

Phase space

- The phase space is $\Xi = \mathbb{R}^{2N}$.
- Symplectic form $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathsf{T}} \Omega \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \Xi$:

$$\mathbf{\Omega} = \bigoplus_{i=1}^{N} \mathbf{\Omega}_{i}, \quad \mathbf{\Omega}_{i} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

- Hilbert space $\mathscr{H} = L^2(\mathbb{R}^N)$, basic quadratures $\mathbf{R} = (Q_1, P_1, \dots, Q_N, P_N)^T$ satisfying $[R_i, R_j] = i\Omega_{ij}$.
- Weyl operators (= time-frequency shifts) $W(\mathbf{x}) := e^{i\mathbf{x}^T\mathbf{R}}$ with CCR $W(\mathbf{x})W(\mathbf{y}) = e^{-i\mathbf{x}^T \mathbf{\Omega} \mathbf{y}} W(\mathbf{y})W(\mathbf{x}).$

Quasi-free observables

- Translations: for any $\mathbf{x} \in \Xi$ define
 - $\alpha_{\mathbf{x}}(A) = W(\mathbf{\Omega}\mathbf{x})^* A W(\mathbf{\Omega}\mathbf{x}) \text{ for } A \in \mathscr{B}(\mathscr{H})$ [quantum]

$$\alpha_{\mathbf{x}}(f)(\mathbf{r}) = f(\mathbf{r} + \mathbf{x}) \text{ for } f \in C_{\ell}$$

• Definition [1]: Let $\mathbf{S} : \mathbb{R}^m \to \Xi$ be any linear map. An observable $\mathsf{E} : \mathscr{F}(\mathbb{R}^m) \to \mathscr{B}_+(\mathscr{H})$ is \mathbf{S} -covariant, if $\Phi_{\mathsf{F}} \circ \alpha_{\mathbf{S}^T \mathbf{x}} = \alpha_{\mathbf{x}} \circ \Phi_{\mathsf{F}}$ for all $\mathbf{x} \in \Xi$.

An observable is *quasi-free* if it is **S**-covariant for some **S**.

[1] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).

 $_{k}(\mathbb{R}^{m})$ [classical]

• Example: mixed state localisation $G(Z) = \chi_Z * T$ is S-covariant for S = I

Structure of quasi-free observables

• Definition [1]: an observable $E: \mathscr{F}(\mathbb{R}^m) \to \mathscr{B}_+(\mathscr{H})$ is S-covariant, if

$$\Phi_{\mathsf{E}} \circ \alpha_{\mathbf{S}^T \mathbf{X}} = \alpha_{\mathbf{X}} \circ \Phi_{\mathsf{E}} \quad \mathsf{for}$$

- Theorem [1]: Any S-covariant observable is determined, through $\Phi_{\mathsf{F}}(e^{i\mathbf{t}^{\mathsf{T}(\cdot)}}) = h(\mathbf{t})W(\mathbf{St}),$
 - by some function $h: \mathbb{R}^m \to \mathbb{C}$ with the "twisted definite" property:
 - For any $(\mathbf{x}_i)_{i=1}^k \subset \mathbb{R}^m$ the matrix

$$H_{ij} := h(-\mathbf{x}_i + \mathbf{x}_j)e^{-i\frac{1}{2}\mathbf{x}_j}$$

- is positive semidefinite, where $\hat{\Omega} = -S^T \Omega S$.
- [1] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).

or all $\mathbf{x} \in \Xi$

 $-\mathbf{x}_{i}^{T}\tilde{\mathbf{\Omega}}\mathbf{x}_{i}$

a possibly degenerate symplectic form

Structure of quasi-free observables

- $(\mathbb{R}^m, \tilde{\Omega})$ with $\tilde{\Omega} = -\mathbf{S}^T \Omega \mathbf{S}$.
- If ker $\mathbf{S} \neq \{0\}$, the phase space $(\mathbb{R}^m, \widehat{\mathbf{\Omega}})$ is a hybrid with commutative degrees of freedom: $\mathbb{R}^m = \Xi_a \oplus \Xi_c$ where $\Xi_c = \ker \tilde{\Omega} = \ker S$.
- Bochner's theorem for hybrids [2]: \exists hybrid state T such that $h(\mathbf{x}) = \hat{\rho}(\mathbf{x}) = \hat{\rho}(\mathbf{x}_q \bigoplus \mathbf{x}_c) = \left[d\mu(\mathbf{r}) e^{i\mathbf{x}_c^T \mathbf{r}} \operatorname{tr}[T_{\mathbf{r}} \tilde{W}_q(\mathbf{x}_q)] \right]$

Quasi-free observables correspond to pairs (S, T).

[1] R. Werner, J. Math. Phys. 25 1404 (1984) [2] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).

• If ker $S = \{0\}$, "quantum Bochner's theorem" [1] gives a mixed state T s.t. $h(\mathbf{x}) = \hat{T}(\mathbf{x}) := \operatorname{tr}[\tilde{W}(\mathbf{x})T]$, where \tilde{W} is the Weyl rep for the phase space

Hybrid state = measure & family of density operators

Quasi-free joint measurability

G is a joint observable for the E_i

- $\Leftrightarrow \Phi_{\mathsf{G}}(f \circ \mathbf{P}_i) = \Phi_{\mathsf{E}}(f) \text{ for all } i = 1, \dots, J, f \in C_h(\mathbb{R}^{m_i})$
- $\Leftrightarrow \Phi_{\mathsf{G}}(e^{i\mathbf{t}^T\mathbf{P}_i(\cdot)}) = \Phi_{\mathsf{E}_i}(e^{i\mathbf{t}^T(\cdot)}) \text{ for all } i = 1, \dots, J, \ \mathbf{t} \in \mathbb{R}^{m_i}$
- \Leftrightarrow **S** = (**S**₁ ··· **S**_J) and $\hat{T} \circ \mathbf{P}_i^T = \hat{T}_i$ for all i = 1, ..., J.

• For each i = 1, ..., J let $\mathbf{E}_i : \mathscr{F}(\mathbb{R}^{m_i}) \to \mathscr{B}_+(\mathscr{H})$ be quasi-free with (\mathbf{S}_i, T_i) . • Joint outcome set $\mathbb{R}^m \simeq \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_j}$ with projections $\mathbf{P}_i : \mathbb{R}^m \to \mathbb{R}^{m_i}$. • Consider an observable $G : \mathscr{F}(\mathbb{R}^m) \to \mathscr{B}_+(\mathscr{H})$ quasi-free with (\mathbf{S}, T) . Then $\Leftrightarrow \hat{T}(\mathbf{P}_i^T \mathbf{t}) W(\mathbf{S}\mathbf{P}_i^T \mathbf{t}) = \hat{T}_i(\mathbf{t}) W(\mathbf{S}_i \mathbf{t}) \text{ for all } i = 1, \dots, J, \ \mathbf{t} \in \mathbb{R}^{m_i}$

Quasi-free joint measurability

• For each i = 1, ..., J let $E_i : \mathscr{F}(\mathbb{R}^{m_i}) \to \mathscr{B}_+(\mathscr{H})$ be quasi-free with (S_i, T_i) . Then:

The E_i are jointly measurable

 \Leftrightarrow The E_i have a quasi-free joint observable

 \Leftrightarrow \exists hybrid state T s.t. $\hat{T}_i = \hat{T} \circ \mathbf{P}_i^T$ for all i = 1, ..., J.

• In this case the pair (S, T) gives a joint observable.

- [by covariance]

- Quasi-free joint measurability is a marginal problem for hybrid states.
- Joint measurements are generalisations of mixed state localisation.

Joint measurability of isotropic localisations

- All other cases obtained by convolution with a probability measure:

$$(\mu * \mathbf{Q}_{\mathbf{S}})(X) := \int \mu(X - \mathbf{r}) \, \mathbf{Q}_{\mathbf{S}}(d\mathbf{r});$$

• $\mu * Q_S$ is an isotropic localisation with noise state μ .

• An isotropic localisation is an S-covariant observable with $\tilde{\Omega} = -S^{\dagger}\Omega S = 0$.

• A quasi-free observable is isotropic iff its noise state is classical (i.e. a measure).

• $\mathbf{t} \mapsto W(\mathbf{St})$ is a unitary group when $\mathbf{S}^{\mathsf{T}} \Omega \mathbf{S} = \mathbf{0}$ (by CCR). The spectral measure $Q_{S}: \mathscr{F}(\mathbb{R}^{m}) \to \mathscr{B}_{+}(\mathscr{H})$ of its Stone generator is a "noiseless" isotropic localisation.

$$(\widehat{\mu^* Q_S})(\mathbf{t}) = \widehat{\mu}(\mathbf{t}) \widehat{Q_S}(\mathbf{t}) = \widehat{\mu}(\mathbf{t}) W(\mathbf{St})$$

Question: Take J noiseless isotropic localisations with matrices $\mathbf{S}_i : \mathbb{R}^{m_i} \to \Xi$. For which measures μ_i are their noisy versions $\mu_1 * Q_{S_1}, \ldots, \mu_J * Q_{S_J}$ jointly measurable?

Joint measurability of isotropic localisations

- - (i) $\mu_1 * Q_{S_1}, \ldots, \mu_n * Q_{S_n}$ are jointly measurable;

Here $\mathbf{V}_i : \mathbb{R}^{m_i} \to \Xi$ is the matrix with ran $\mathbf{V}_i = \operatorname{ran} \mathbf{S}_i$ and $\mathbf{S}_i^\mathsf{T} \mathbf{V}_i = \mathbf{I}_{m_i}$.

• Thm: Let $\mathbf{S}_i : \mathbb{R}^{m_i} \to \Xi$ be matrices with $\mathbf{S}_i^{\mathsf{T}} \mathbf{\Omega} \mathbf{S}_i = \mathbf{0}$ and μ_i noise measures. Denote $\mathbf{S} = (\mathbf{S}_1 \cdots \mathbf{S}_J)$, assume rank $\mathbf{S} = 2N$. The following are equivalent:

(ii) $\mu_i = \operatorname{tr}[S_i Q_{-S_i}(\cdot)]$ where $S_i = \int_{\ker S} \nu(d\mathbf{r}) \ \alpha_{\mathbf{V}_i \mathbf{P}_i \mathbf{r}}(T_{\mathbf{r}})$ for a positive measure ν and an integrable positive trace-class valued function $\mathbf{r} \mapsto T_{\mathbf{r}}$ on ker **S**.

Necessary condition for quadratures

- Take $\mathbf{y}_i \in \Xi = \mathbb{R}^2$ such that span $\{\mathbf{y}_1, \dots, \mathbf{y}_J\} = \Xi$. Consider quadratures $Q_{\mathbf{v}_i} = \mathbf{y}_i^{\mathsf{T}} \mathbf{R} = y_{i1} Q + y_{i2} P$, and let μ_i be probability measures on \mathbb{R} .
- Thm: If $\mu_1 * Q_{v_1}, \ldots, \mu_J * Q_{v_J}$ are jointly measurable, the noise measures satisfy the uncertainty relation $\sum_{i=1}^{J} \operatorname{Var}(\mu_i) \ge \frac{1}{\sqrt{2}} \|\tilde{\Omega}\|_2,$ wher

Proof: Follows from the general result combined with an UR for multiple quadratures from [1].

Joint measurability requires (at least) certain amount of noise.

[1] S. Kechrimparis, S. Weigert, J. Phys. A: Math. Theor. 51 025303 (2018)

$$re \ \tilde{\mathbf{\Omega}}_{ij} = - \mathbf{y}_i^{\mathsf{T}} \mathbf{\Omega} \mathbf{y}_{j}.$$

Thank you