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Overview
• General concepts

‣ Quantum observables and their joint measurability

‣ The relevant case: phase space localisation

‣ Implications of covariance


• Phase space setting


‣ Quasi-free (covariant) observables


‣ Joint measurability of several quasi-free observables


‣ A necessary condition for quadratures



• Goes back to the Uncertainty Principle (Heisenberg1): 


Some physical “observables” cannot be simultaneously 
measured (with arbitrary precision). 

• Traditional mathematical setting:


‣ Observables are self-adjoint operators, or collections of 
orthogonal projections (spectral theorem)


‣ Observables are jointly measurable iff they commute.


• This setting is not sufficient for quantum information 
purposes!

Origin of the joint measurability problem

1) W. Heisenberg Z. Phys. 43 172–198 (1927).

ΔxΔp ≥
ℏ
2



• Based on generalised observables — collections of positive operators, or 
“effect cones” in probabilistic theories (about physical systems).


• Originated1 (in the 1960s) within the statistical “operational / empiricist” 
interpretation and axiomatisation of quantum mechanics1,2.


• Developed subsequently in infinite-dimensional settings including CCR and 
quantum harmonic analysis2.


• Currently (since ~ 10 years) used extensively in quantum information 
community, in finite-dimensional setting.

1) G. Ludwig, Deutung des Begriffs “physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur 
der Quantenmechanik durch Hauptsaetze des Messens, Lecture Notes in Physics 4, Springer 1970.

2) R. Werner, J. Math. Phys. 25 1404 (1984); A. S. Holevo, Probabilistic and statistical aspects of quantum theory, 
North-Holland Series in Statistics and Probability, Vol. 1, North-Holland 1982; E. B. Davies, Quantum Theory of 
Open Systems, Academic Press, 1976; P. Busch, M. Grabowski, P. J. Lahti, Operational quantum physics, 
LNPMGR, vol 31, Springer 1995.

Modern formulation of quantum measurements



• Repeated preparation of a “system” 
defines a state . 

• Observable  with outcomes  is 
defined by empirical probabilities 

 for . 

• A probabilistic theory gives a model 

ρ

𝖤 x ∈ 𝒳

ℙ(x ∈ X |ρ, 𝖤) X ⊂ 𝒳

ℙ(x ∈ X |ρ, 𝖤) = ⟨𝖤(X), ρ⟩

Probabilistic framework of measurements

𝖤
“system”

‣  is a dual pair of order unit & base normed Banach spaces


‣  (unit interval, “effects”),      (states)

⟨𝒱*, 𝒱⟩

𝖤(X) ∈ [0,𝕀] ⊂ 𝒱* ρ ∈ S ⊂ 𝒱

:ℙ(x ∈ X |ρ, 𝖤) x
Empirical distribution

ρ

Preparation Measurement
x

“statistical 
duality”



Quantum observables — definition
• An observable extracts classical information from a quantum system.


‣ Classical outcomes:  — a locally compact Hausdorff space


‣ Quantum system:  — a complex separable Hilbert space


• Observable: a weak-* -additive measure  with 
.    (  = Borel -algebra.)


‣ If  is measured on a quantum state , then 


  


is the probability of getting outcome in a set . 

𝒳
ℋ

σ 𝖤 : ℱ(𝒳) → ℬ(ℋ)+
𝖤(𝒳) = 𝕀 ℱ(𝒳) σ

𝖤 ρ ∈ ℬ(ℋ)* = 𝒯(ℋ)
ℙ(x ∈ X |ρ, 𝖤) = ⟨ρ, 𝖤(X)⟩ = tr[ρ𝖤(X)]

X ∈ ℱ(𝒳)

positive 
operators



Observables — algebraic “channel” picture
• Let 


• An observable  defines a , 


         (weak-* convergent integral).


• Conversely, let  be s.t.  where 


    (“weight at infinity” [1]).


Then there is a unique observable  such that .

𝒞(𝒳, ℋ) = {Φ : Cb(𝒳) → ℬ(ℋ) ∣ Φ bdd positive linear, Φ(1) = 𝕀}

𝖤 : ℱ(𝒳) → ℬ+(ℋ) Φ𝖤 ∈ 𝒞(𝒳, ℋ)

Φ𝖤( f ) = ∫ f(x)𝖤(dx)

Φ ∈ 𝒞(𝒳, ℋ) Φ(∞) = 0

Φ(∞) = inf{Φ(1 − f ) ∣ f ∈ Cc(𝒳), 0 ≤ f ≤ 1}

𝖤 : ℱ(𝒳) → ℬ+(ℋ) Φ = Φ𝖤

[1] R. F. Werner, Quant. Inform. Comput. 4, 546–562 (2004)




Joint measurability — conceptual idea
• Can a given pair of observables  be 

simulated by a single joint observable ?


• The outcome distribution of  should be a joint 
probability distribution for the distributions of 

 in every state.


• In quantum theory joint observables do not exist 
for every pair .

𝖤1, 𝖤2
𝖦

𝖦

𝖤1, 𝖤2

𝖤1, 𝖤2

Preparation Measurement

ρ 𝖦

𝖤1ρ

𝖤2ρ

x1

x2

(x1, x2)



Joint measurability — definition
• Definition: Observables  are jointly 

measurable if there is an observable  s.t.


 for all ,


where  is the canonical injection.


• If  are spectral measures, they are jointly measurable iff they commute. A 
joint observable is , .


• In general, commutativity is sufficient but not necessary for joint 
measurability.

𝖤i : ℱ(𝒳i) → ℬ+(ℋ), i = 1,…, J
𝖦 : ℱ(𝒳1 × ⋯ × 𝒳J) → ℬ+(ℋ)

Φ𝖤i
= Φ𝖦 ∘ Πi i = 1,…, J

Πi : Cb(𝒳i) → Cb(𝒳1 × ⋯ × 𝒳J)
𝖤i

𝖦(X1 × ⋯ × XJ) = 𝖤1(X1)⋯𝖤J(XJ) ≥ 0 Xi ∈ ℱ(𝒳i)



Joint measurements — phase space setting
• Basic case: “mixed state localisation” of 

position-momentum (or time-frequency): 

‣ Integrating over momentum gives a noisy 
(convolved) position observable  with  




‣ Similarly, integrating over position gives a 
noisy momentum .


‣ So the mixed state localisation defines a 
joint observable for  and .

μρ * 𝖰
μT(X) = tr[T𝖯(−X)]

νT * 𝖯

μT * 𝖰 νT * 𝖯

Q

P

𝖦(Z) = χZ * T

Z



Joint measurements — phase space setting
• Generalisation: multiple directions 

‣ Look at multiple observables corresponding 
to arbitrary directions in phase space


‣ These are used in physics, say, for state 
tomography in quantum optics


‣ Related to e.g. Radon transform


‣ The joint measurability problem now 
corresponds to localisation in a higher 
dimensional “hybrid” phase space with 
degenerate symplectic form 

Q

P
y11Q + y12P

y21Q + y22P

y31Q + y32P



Covariant joint measurability
• Denote ,

, ,  canonical injections.


• Let an amenable semigroup  act by


‣ anti-homomorphisms  satisfying ;

‣ a homomorphism  where each  is weak-* continuous.


• Call  covariant if  for all . 


• Thm: Let . If  is covariant for each 
, then there is a covariant  s.t.  

for each . (Proof sketch: use [1] with suitable weak-* topology.)

𝒞(ℋ) = {Φ : ℬ(ℋ) → ℬ(ℋ) ∣ Φ (completely) positive linear, Φ(𝕀) = 𝕀}
𝒳0 = 𝒳1 × ⋯ × 𝒳J Π0 = IdCb(𝒳0) Πi : Cb(𝒳i) → Cb(𝒳0)

S
s ↦ αi

s ∈ 𝒞(𝒳i) α0
s ∘ Πi = Πi ∘ αi

s
s ↦ αs ∈ 𝒞(ℋ) αs

Φ ∈ 𝒞(𝒳i, ℋ) αs ∘ Φ ∘ αi
s = Φ s ∈ S

Φ0 ∈ 𝒞(𝒳0, ℋ) Φ0 ∘ Πi ∈ 𝒞(𝒳i, ℋ)
i = 1,…, J Φ ∈ 𝒞(𝒳0, ℋ) Φ ∘ Πi = Φ0 ∘ Πi

i

[1] M. M. Day, "Fixed-point theorems for compact convex sets" Illinois J. Math. 5 585-590, (1961) 



Covariant joint measurability
Thm: If  are covariant jointly measurable 
observables, then they have a covariant joint observable 

. 

Proof sketch: Now  for a covariant  [by the 
preceding Thm]. Additionally  for all i, which implies , 
hence   for some observable .


• This result generalises [1] which was based on the ideas from [2,3]

𝖤i : ℱ(𝒳i) → ℬ+(ℋ), i = 1,…, J

𝖦 : ℱ(𝒳1 × ⋯ × 𝒳J) → ℬ+(ℋ)

Φ ∘ Πi = Φ𝖤i
Φ ∈ 𝒞(𝒳0, ℋ)

Φ𝖤i
(∞) = 0 Φ(∞) = 0

Φ = Φ𝖦 𝖦

[1] C. Carmeli, T. Heinonen, A. Toigo, J. Phys. A: Math. Gen. 38 5253 (2005)

[2] P. Busch. Internat. J. Theoret. Phys. 24 63–92 (1985) 

[3] R. F. Werner, Quant. Inform. Comput. 4, 546–562 (2004).



Phase space

• The phase space is .


• Symplectic form  for all :


.


• Hilbert space , basic quadratures  
satisfying .


• Weyl operators (= time-frequency shifts)  with CCR


.

Ξ = ℝ2N

⟨x, y⟩ = x⊺Ωy x, y ∈ Ξ

Ω = ⊕N
i=1 Ωi, Ωi = ( 0 1

−1 0)
ℋ = L2(ℝN) R = (Q1, P1, …, QN, PN)⊺

[Ri, Rj] = iΩij 𝕀

W(x) := eixTR

W(x)W(y) = e−ixTΩyW(y)W(x)



Quasi-free observables
• Translations: for any  define 


 for    [quantum]


 for               [classical]


• Definition [1]: Let  be any linear map. An observable 
 is -covariant, if


                          for all .


An observable is quasi-free if it is -covariant for some .


• Example: mixed state localisation  is -covariant for  

x ∈ Ξ
αx(A) = W(Ωx)*AW(Ωx) A ∈ ℬ(ℋ)
αx( f )(r) = f(r + x) f ∈ Cb(ℝm)

S : ℝm → Ξ
𝖤 : ℱ(ℝm) → ℬ+(ℋ) S

Φ𝖤 ∘ αSTx = αx ∘ Φ𝖤 x ∈ Ξ
S S

𝖦(Z) = χZ * T S S = 𝕀

[1] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).



Structure of quasi-free observables
• Definition [1]: an observable  is -covariant, if


   for all 


• Theorem [1]: Any -covariant observable is determined, through


,


by some function  with the “twisted definite” property:


For any  the matrix 


 


is positive semidefinite, where .

𝖤 : ℱ(ℝm) → ℬ+(ℋ) S
Φ𝖤 ∘ αSTx = αx ∘ Φ𝖤 x ∈ Ξ

S
Φ𝖤(eit⊺(⋅)) = h(t)W(St)

h : ℝm → ℂ
(xi)k

i=1 ⊂ ℝm

Hij := h(−xi + xj)e−i 1
2 xT

i Ω̃xj

Ω̃ = − STΩS
a possibly degenerate 

symplectic form

[1] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).



Structure of quasi-free observables
• If , “quantum Bochner’s theorem” [1] gives a mixed state  s.t. 

, where  is the Weyl rep for the phase space
 with  .


• If , the phase space  is a hybrid with commutative 
degrees of freedom:  where .


• Bochner’s theorem for hybrids [2]:   hybrid state  such that




• Quasi-free observables correspond to pairs .

ker S = {0} T
h(x) = ̂T(x) := tr[W̃(x)T] W̃
(ℝm, Ω̃) Ω̃ = − STΩS

ker S ≠ {0} (ℝm, Ω̃)
ℝm = Ξq ⊕ Ξc Ξc = ker Ω̃ = ker S

∃ T
h(x) = ̂ρ(x) = ̂ρ(xq ⊕ xc) = ∫Ξc

dμ(r) eixT
c r tr[TrW̃q(xq)]

(S, T)

Hybrid state = 
measure & family of 
density operators

[1] R. Werner, J. Math. Phys. 25 1404 (1984)

[2] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).



Quasi-free joint measurability
• For each  let  be quasi-free with .


• Joint outcome set  with projections .


• Consider an observable  quasi-free with . Then


 is a joint observable for the 


   for all ,    


   for all ,   


    for all ,  


    and  for all .

i = 1,…, J 𝖤i : ℱ(ℝmi) → ℬ+(ℋ) (Si, Ti)

ℝm ≃ ℝm1 × ⋯ × ℝmJ Pi : ℝm → ℝmi

𝖦 : ℱ(ℝm) → ℬ+(ℋ) (S, T)

𝖦 𝖤i

⇔ Φ𝖦( f ∘ Pi) = Φ𝖤i
( f ) i = 1,…, J f ∈ Cb(ℝmi)

⇔ Φ𝖦(eitTPi(⋅)) = Φ𝖤i
(eitT(⋅)) i = 1,…, J t ∈ ℝmi

⇔ ̂T(PT
i t)W(SPT

i t) = ̂Ti(t)W(Sit) i = 1,…, J t ∈ ℝmi

⇔ S = (S1 ⋯ SJ) ̂T ∘ PT
i = ̂Ti i = 1,…, J



Quasi-free joint measurability
• For each  let  be quasi-free with . 

Then:


The  are jointly measurable    


  The  have a quasi-free joint observable            [by covariance]


  hybrid state  s.t.   for all .


• In this case the pair  gives a joint observable.


Quasi-free joint measurability is a marginal problem for hybrid states.


Joint measurements are generalisations of mixed state localisation.

i = 1,…, J 𝖤i : ℱ(ℝmi) → ℬ+(ℋ) (Si, Ti)

𝖤i

⇔ 𝖤i

⇔ ∃ T ̂Ti = ̂T ∘ PT
i i = 1,…, J

(S, T)



Joint measurability of isotropic localisations
• An isotropic localisation is an -covariant observable with .


• A quasi-free observable is isotropic iff its noise state is classical (i.e. a measure).


•  is a unitary group when  (by CCR). The spectral measure 
 of its Stone generator is a “noiseless” isotropic localisation.


• All other cases obtained by convolution with a probability measure: 


;        


‣  is an isotropic localisation with noise state .


• Question: Take  noiseless isotropic localisations with matrices . For 
which measures  are their noisy versions  jointly measurable?

S Ω̃ = − S⊺ΩS = 0

t ↦ W(St) S⊺ΩS = 0
𝖰S : ℱ(ℝm) → ℬ+(ℋ)

(μ * 𝖰S)(X) := ∫ μ(X − r) 𝖰S(dr) ̂(μ * 𝖰S)(t) = ̂μ(t) ̂𝖰S (t) = ̂μ(t)W(St)

μ * 𝖰S μ

J Si : ℝmi → Ξ
μi μ1 * 𝖰S1

, …, μJ * 𝖰SJ



Joint measurability of isotropic localisations
• Thm: Let  be matrices with  and  noise measures. 

Denote , assume . The following are equivalent: 

 (i)  are jointly measurable; 

(ii)  where  for a positive measure 

 and an integrable positive trace-class valued function  on . 

Here  is the matrix with  and .

Si : ℝmi → Ξ S⊺
i ΩSi = 0 μi

S = (S1 ⋯ SJ) rank S = 2N

μ1 * 𝖰S1
, …, μn * 𝖰Sn

μi = tr[Si 𝖰−Si
( ⋅ )] Si = ∫ker S

ν(dr) αViPir(Tr)

ν r ↦ Tr ker S

Vi : ℝmi → Ξ ranVi = ran Si S⊺
i Vi = Imi



Necessary condition for quadratures
• Take  such that . Consider quadratures 

, and let  be probability measures on .


• Thm: If  are jointly measurable, the noise measures 
satisfy the uncertainty relation 

,      where . 

Proof: Follows from the general result combined with an UR for multiple 
quadratures from [1].


‣ Joint measurability requires (at least) certain amount of noise.

yi ∈ Ξ = ℝ2 span{y1, …, yJ} = Ξ
Qyi

= y⊺
i R = yi1Q + yi2P μi ℝ

μ1 * 𝖰y1
, …, μJ * 𝖰yJ

J

∑
i=1

Var(μi) ≥
1

2
∥Ω̃∥2 Ω̃ij = − y⊺

i Ωyj

[1] S. Kechrimparis, S. Weigert, J. Phys. A: Math. Theor. 51 025303 (2018) 



Thank you


