

Joint measurement of quasi-free observables in phase space

- Jukka Kiukas Aberystwyth University, UK
- Joint work with Jussi Schultz (Turku, Finland) and R. F. Werner (LUH)
	- Workshop on Quantum Harmonic Analysis August 2024 Hannover

Overview

- General concepts
	- ‣ Quantum observables and their joint measurability
	- ‣ The relevant case: phase space localisation
	- ‣ Implications of covariance
- Phase space setting
	- ‣ Quasi-free (covariant) observables
	- ‣ Joint measurability of several quasi-free observables
	- ‣ A necessary condition for quadratures

Some physical "observables" cannot be simultaneously measured (with arbitrary precision).

- Traditional mathematical setting:
	- ‣ Observables are self-adjoint operators, or collections of orthogonal projections (spectral theorem)
	- ‣ Observables are jointly measurable iff they commute.
- This setting is not sufficient for quantum information purposes!

Origin of the joint measurability problem

Goes back to the Uncertainty Principle (Heisenberg¹):

1) **W. Heisenberg** Z. Phys. 43 172–198 (1927).

- Based on generalised observables collections of positive operators, or "effect cones" in probabilistic theories (about physical systems).
- Originated¹ (in the 1960s) within the statistical "operational / empiricist" interpretation and axiomatisation of quantum mechanics^{1,2}.
- Developed subsequently in infinite-dimensional settings including CCR and quantum harmonic analysis2 .
- Currently (since ~ 10 years) used extensively in quantum information community, in finite-dimensional setting.
- der Quantenmechanik durch Hauptsaetze des Messens, Lecture Notes in Physics 4, Springer 1970. North-Holland Series in Statistics and Probability, Vol. 1, North-Holland 1982; **E. B. Davies**, Quantum Theory of Open Systems, Academic Press, 1976; **P. Busch, M. Grabowski, P. J. Lahti**, Operational quantum physics,
- 1)**G. Ludwig**, Deutung des Begriffs "physikalische Theorie" und axiomatische Grundlegung der Hilbertraumstruktur 2) **R. Werner**, J. Math. Phys. 25 1404 (1984); **A. S. Holevo**, Probabilistic and statistical aspects of quantum theory, LNPMGR, vol 31, Springer 1995.

Modern formulation of quantum measurements

Probabilistic framework of measurements

- Repeated preparation of a "system" defines a *state* $ρ$ *.*
- Observable E with outcomes $x \in \mathcal{X}$ is defined by empirical probabilities $\mathbb{P}(x \in X | \rho, E)$ for $X \subset \mathscr{X}$.
- A probabilistic theory gives a *model* $\mathbb{P}(x \in X | \rho, E) = \langle E(X), \rho \rangle$
	- $\left\langle \mathscr{V}^{\ast},\mathscr{V}\right\rangle$ is a dual pair of order unit & base normed Banach spaces
	-

 \triangleright E(X) ∈ [0, I] ⊂ \mathcal{V}^* (unit interval, "effects"), $\rho \in S \subset \mathcal{V}$ (states)

Quantum observables — definition

- An observable extracts classical information from a quantum system.
	- Classical outcomes: \mathscr{X} a locally compact Hausdorff space
	- Quantum system: \mathcal{H} a complex separable Hilbert space
- <u>Observable</u>: a weak-* σ -additive measure $E : \mathscr{F}(\mathscr{X}) \to \mathscr{B}(\mathscr{H}_{\ell+1})$ with $(X) =$ \mathbb{I} . $(\mathcal{F}(X)) =$ Borel σ -algebra.) positive operators
	- If E is measured on a quantum state $\rho \in \mathscr{B}(\mathscr{H})_* = \mathscr{T}(\mathscr{H})$, then
		- $\mathbb{P}(x \in X | \rho, E) = \langle \rho, E(X) \rangle = \text{tr}[\rho E(X)]$
		- is the probability of getting outcome in a set $X \in \mathscr{F}(\mathscr{X})$.

Observables — algebraic "channel" picture

- An observable $E: \mathscr{F}(\mathscr{X}) \to \mathscr{B}_+(\mathscr{H})$ defines a $\Phi_E \in \mathscr{C}(\mathscr{X}, \mathscr{H})$, $\Phi_{\mathsf{E}}(f) = \int f(x) \mathsf{E}(dx)$ (weak-* convergent integral).
- **Conversely**, let $\Phi \in \mathscr{C}(X, \mathcal{H})$ be s.t. $\Phi(\infty) = 0$ where
	- $\Phi(\infty) = \inf \{ \Phi(1-f) \mid f \in C_c(\mathcal{X}), 0 \le f \le 1 \}$ ("weight at infinity" [1]).

[1] R. F. Werner, Quant. Inform. Comput. 4, 546–562 (2004)

• Let $\mathscr{C}(X,\mathscr{H}) = \{ \Phi : C_b(X) \to \mathscr{B}(\mathscr{H}) \mid \Phi \text{bdd positive linear}, \Phi(1) = \mathbb{I} \}$

Then there is a unique observable $\mathsf{E}:\mathscr{F}(\mathscr{X})\to\mathscr{B}_+(\mathscr{H})$ such that $\Phi=\Phi_\mathsf{E}.$

Joint measurability — conceptual idea

- Can a given pair of observables E_1, E_2 be simulated by a single joint observable G?
- \bullet The outcome distribution of G should be a joint probability distribution for the distributions of $_1$, E_2 in every state.
- In quantum theory joint observables do not exist for every pair E_1, E_2 .

Joint measurability — definition

• Definition: Observables $E_i : \mathscr{F}(\mathscr{X}_i) \to \mathscr{B}_+(\mathscr{H}), i = 1,...,J$ are jointly measurable if there is an observable $\textsf{G}:\mathscr{F}(\mathscr{X}_1\times\cdots\times\mathscr{X}_J)\to\mathscr{B}_+(\mathscr{H})$ s.t. $\overline{}$, $\big($

- If E_i are spectral measures, they are jointly measurable iff they commute. A joint observable is $G(X_1 \times \cdots \times X_J) = \mathsf{E}_1(X_1) \cdots \mathsf{E}_J(X_J) \geq 0, X_i \in \mathcal{F}(\mathcal{X}_i).$ *i*
- In general, commutativity is sufficient but not necessary for joint measurability.

$$
\Phi_{\mathsf{E}_i} = \Phi_{\mathsf{G}} \circ \Pi_i \text{ for all } i = 1,...,J
$$

where $\Pi_i: C_b({\mathscr X}_i) \to C_b({\mathscr X}_1 \times \cdots \times {\mathscr X}_J)$ is the canonical injection.

- ‣ Integrating over momentum gives a noisy (convolved) position observable μ_{ρ} ^{*} Q with $\mu_T(X) = \text{tr}[T P(-X)]$
- ‣ Similarly, integrating over position gives a noisy momentum ν_T ^{*} P.
- ‣ So the mixed state localisation defines a $\frac{1}{2}$ joint observable for μ_T * Q and ν_T * P.

• Basic case: "mixed state localisation" of position-momentum (or time-frequency):

$$
G(Z) = \chi_Z * T
$$

- **• Generalisation: multiple directions**
	- ‣ Look at multiple observables corresponding to arbitrary directions in phase space
	- ‣ These are used in physics, say, for state tomography in quantum optics
	- ‣ Related to e.g. Radon transform
	- ‣ The joint measurability problem now corresponds to localisation in a higher dimensional "hybrid" phase space with degenerate symplectic form

Covariant joint measurability

-
- Let an amenable semigroup S act by
	- \blacktriangleright anti-homomorphisms $s\mapsto \alpha_s^i\in \mathscr{C}(\mathscr{X}_i)$ satisfying $\alpha_s^0\circ \Pi_i=\Pi_i\circ \alpha_s^i,$ $s^l \in \mathscr{C}(\mathscr{X}_i)$) satisfying $\alpha_{\scriptscriptstyle S}^0$ $\int_{S}^{0} \cdot \prod_{i} = \prod_{i} \cdot \alpha_{S}^{i}$
	- a homomorphism $s \mapsto \alpha_s \in \mathscr{C}(\mathscr{H})$ where each α_s is weak-* continuous.
- Call $\Phi \in \mathscr{C}(\mathscr{X}_i, \mathscr{H})$ covariant if $\alpha_s \circ \Phi \circ \alpha_s^i = \Phi$ for all $s \in S$. \bullet Φ \circ α_s^i *s* $=$ Φ for all $s \in S$
- Thm: Let $\Phi_0 \in \mathscr{C}(\mathscr{X}_0, \mathscr{H})$. If $\Phi_0 \circ \Pi_i \in \mathscr{C}(\mathscr{X}_i, \mathscr{H})$ is covariant for each $i=1,...,J$, then there is a covariant $\Phi\in \mathscr{C}(\mathscr{X}_0,\mathscr{H})$ s.t. $\Phi\circ \Pi_i=\Phi_0\circ \Pi_i$ *for each i*. (Proof sketch: use [1] with suitable weak-* topology.)

• Denote $\mathscr{C}(\mathscr{H}) = \{\Phi : \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H}) \mid \Phi$ (completely) positive linear, $\Phi(\mathbb{I}) = \mathbb{I}\},$ $C_0 = {\mathscr X}_1 \times \cdots \times {\mathscr X}_J, \Pi_0 = \mathrm{Id}_{C_b({\mathscr X}_0)}, \Pi_i: C_b({\mathscr X}_i) \to C_b({\mathscr X}_0)$ canonical injections.

[1] M. M. Day, "Fixed-point theorems for compact convex sets" Illinois J. Math. 5 585-590, (1961)

Covariant joint measurability

observables, then they have a covariant joint observable $: \mathcal{F}(\mathcal{X}_1 \times \cdots \times \mathcal{X}_J) \to \mathcal{B}_+(\mathcal{H}).$

hence $\Phi = \Phi_{G}$ for some observable G. *i*

• This result generalises [1] which was based on the ideas from [2,3]

[1] C. Carmeli, T. Heinonen, A. Toigo, J. Phys. A: Math. Gen. 38 5253 (2005) [2] P. Busch. Internat. J. Theoret. Phys. 24 63–92 (1985) [3] R. F. Werner, Quant. Inform. Comput. 4, 546–562 (2004).

- \textbf{Thm} *: If* $\mathsf{E}_i: \mathscr{F}({\mathscr{X}}_i) \to \mathscr{B}_+({\mathscr{H}}),\ i=1,...,J$ are covariant jointly measurable
	-
	- Proof sketch: Now $\Phi \circ \Pi_i = \Phi_{\mathsf{E}_i}$ for a covariant $\Phi \in \mathscr{C}(\mathscr{X}_0, \mathscr{H})$ [by the preceding Thm]. Additionally $\Phi_{\sf E_i}(\infty)=0$ for all i, which implies $\Phi(\infty)=0,$ $(\infty) = 0$ for all i, which implies $\Phi(\infty) = 0$

Phase space

- The phase space is $\Xi = \mathbb{R}^{2N}$.
- Symplectic form $\langle x, y \rangle = x^T \Omega y$ for all $x, y \in \Xi$:

$$
\mathbf{\Omega} = \bigoplus_{i=1}^{N} \Omega_i, \quad \mathbf{\Omega}_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

- Hilbert space $\mathcal{H} = L^2(\mathbb{R}^N)$, basic quadratures $\mathbf{R} = (Q_1, P_1, ..., Q_N, P_N)^\intercal$ satisfying $[R_i, R_j] = i\Omega_{ij}$ [...
- Weyl operators (= time-frequency shifts) $W(\mathbf{x}) := e^{i\mathbf{x}^T\mathbf{R}}$ with CCR $W(\mathbf{x})W(\mathbf{y}) = e^{-i\mathbf{x}^T\mathbf{\Omega}\mathbf{y}}W(\mathbf{y})W(\mathbf{x})$

.

Quasi-free observables

- Translations: for any \mathbf{x} ∈ Ξ define
	- $\alpha_{\mathbf{x}}(A) = W(\mathbf{\Omega} \mathbf{x})^* A W(\mathbf{\Omega} \mathbf{x})$ for $A \in \mathcal{B}(\mathcal{H})$ [quantum]

$$
\alpha_{\mathbf{x}}(f)(\mathbf{r}) = f(\mathbf{r} + \mathbf{x}) \text{ for } f \in C_b(\mathbb{R}^m)
$$

• Definition [1]: Let $S : \mathbb{R}^m \to \Xi$ be any linear map. An observable is S-covariant, if $\Phi_{\mathsf{E}} \circ \alpha_{\mathbf{S}^T\mathbf{x}} = \alpha_{\mathbf{x}} \circ \Phi_{\mathsf{E}} \text{ for all } \mathbf{x} \in \Xi.$ **S** : ℝ*^m* → Ξ $: \mathscr{F}(\mathbb{R}^m) \to \mathscr{B}_+(\mathscr{H})$ is S

An observable is $quasi-free$ if it is S -covariant for some S .

[1] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).

 $f_{h}(\mathbb{R}^m)$ [classical]

• Example: mixed state localisation $G(Z) = \chi_Z * T$ is S -covariant for $S =$

Structure of quasi-free observables

• Definition [1]: an observable $\mathsf{E}:\mathscr{F}(\mathbb{R}^m)\to \mathscr{B}_+(\mathscr{H})$ is $\mathbf S$ -covariant, if

,

 $\partial e^{-i\frac{1}{2}\mathbf{x}_i^T\tilde{\mathbf{\Omega}}\mathbf{x}_j}$

 $\tilde{\mathbf{Q}} = -\mathbf{S}^T \mathbf{\Omega} \mathbf{S}$

- Theorem [1]: Any S-covariant observable is determined, through $\Phi_{\text{E}}(e^{it\text{T}}(\cdot))$ $) = h(t)W(St)$
	- by some function $h:\mathbb{R}^m\to\mathbb{C}$ with the "twisted definite" property: *h* : ℝ*^m* → ℂ
	- For any $(\mathbf{x}_i)_{i=1}^k \subset \mathbb{R}^m$ the matrix *k ⁱ*=1 ⊂ ℝ*^m* $H_{ij} := h(-\mathbf{x}_i + \mathbf{x}_j)$
	- is positive semidefinite, where $\mathbf{\Omega} = -\mathbf{S}^T \mathbf{\Omega} \mathbf{S}$.
	- [1] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).

\circ Φ _E for all $x \in \Xi$ $: \mathscr{F}(\mathbb{R}^m) \to \mathscr{B}_+(\mathscr{H})$ is S

$$
\Phi_{E} \circ \alpha_{S^{T}x} = \alpha_{x} \circ \Phi_{E} \quad \text{for}
$$

a possibly degenerate symplectic form

Structure of quasi-free observables

- $h(\mathbf{x}) = T(\mathbf{x}) := \mathrm{tr}[W(\mathbf{x})T]$, where W is the Weyl rep for the phase space with $\Omega = -S^1 \Omega S$. ̂ $\widetilde{\lambda}$ $\left(\mathbf{x}\right) T$], where W $(\mathbb{R}^m, \tilde{\Omega})$ $\widetilde{\widetilde{}}$) **Ω** $\tilde{\mathbf{Q}} = -\mathbf{\dot{S}}^T \mathbf{\Omega} \mathbf{S}$
- If $\text{ker } S \neq \{0\}$, the phase space $(\mathbb{R}^m, \tilde{\Omega})$ is a *hybrid* with commutative degrees of freedom: $\mathbb{R}^m = \Xi_a \oplus \Xi_c$ where $\Xi_c = \ker \Omega = \ker S$. $\mathbb{R}^m = \Xi_q \oplus \Xi_c$ where Ξ_c
- Bochner's theorem for hybrids [2]: *∃ hybrid state T* such that $h(\mathbf{x}) = \hat{\rho}(\mathbf{x}) = \hat{\rho}(\mathbf{x}_q \oplus \mathbf{x}_c) = \int_{\Xi_c}$

• Quasi-free observables correspond to pairs (S, T) .

 $\widetilde{\widetilde{}}$) = ker **Ω** $\widetilde{\widetilde{}}$ = ker **S**

 $d\mu(\mathbf{r})e^{i\mathbf{x}_c^T\mathbf{r}}$ tr $T_{\mathbf{r}}\widetilde{W}$ *^q*(**x***q*)]

Hybrid state = measure & family of density operators

[1] R. Werner, J. Math. Phys. 25 1404 (1984) [2] R. F. Werner, L. Dammeier, Quantum 7, 1068 (2023).

• If $\ker S = \{0\}$, "quantum Bochner's theorem" [1] gives a mixed state T s.t. $\widetilde{\lambda}$

Quasi-free joint measurability

-
-
-

is a joint observable for the

- $\Leftrightarrow \ \Phi_{\mathsf{G}}(f \circ \mathbf{P}_i) = \Phi_{\mathsf{E}_i}(f)$ for all $i = 1, \ldots, J$,
- $\Phi_{\mathsf{G}}(e^{i\mathbf{I}^{\dagger}\mathbf{F}_{i}(\cdot)})=\Phi_{\mathsf{F}}(e^{i\mathbf{I}^{\dagger}(\cdot)})$ for all $i=1,\ldots,J$, $\Leftrightarrow \Phi_G(e^{it^T P_i(\cdot)})$ $) = \Phi$ *i*
- $\Rightarrow \hat{T}(\mathbf{P}_i^T \mathbf{t}) W(\mathbf{S} \mathbf{P}_i^T \mathbf{t}) = \hat{T}_i(\mathbf{t}) W(\mathbf{S}_i \mathbf{t})$ for all $i = 1, ..., J$, **ै** ̂
- \Leftrightarrow $\mathbf{S} = (\mathbf{S}_1 \quad \cdots \quad \mathbf{S}_J)$ and $\hat{T} \circ \mathbf{P}_i^T = \hat{T}_i$ for all $i = 1, ..., J$.

• For each $i=1,...,J$ let $\mathsf{E}_i:\mathscr{F}(\mathbb{R}^{m_i})\to\mathscr{B}_+(\mathscr{H})$ be quasi-free with $(\mathbf{S}_i,T_i).$ • Joint outcome set $\mathbb{R}^m\simeq\mathbb{R}^{m_1}\times\cdots\times\mathbb{R}^{m_J}$ with projections $\mathbf{P}_i:\mathbb{R}^m\to\mathbb{R}^{m_i}$. • Consider an observable $G:\mathscr{F}(\mathbb{R}^m)\to \mathscr{B}_+(\mathscr{H})$ quasi-free with $(\mathbf{S},T).$ Then $i=1,...,J$ let $\mathsf{E}_i:\mathscr{F}(\mathbb{R}^{m_i})\to\mathscr{B}_+(\mathscr{H})$ be quasi-free with (\mathbf{S}_i,T_i) $\mathbb{R}^m \simeq \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_J}$ with projections $\mathbf{P}_i : \mathbb{R}^m \to \mathbb{R}^{m_i}$: $\mathscr{F}(\mathbb{R}^m) \to \mathscr{B}_+(\mathscr{H})$ quasi-free with (\mathbf{S},T) *i* $\mathcal{L}_i(f)$ for all $i = 1,...,J$, $f \in C_b(\mathbb{R}^{m_i})$) $(e^{it^T(\cdot)})$ for all $i = 1,...,J$, $t \in \mathbb{R}^{m_i}$ **t**) for all $i = 1,...,J$, $\mathbf{t} \in \mathbb{R}^{m_i}$ $I_i = T_i$ for all $i = 1,...,J$ ̂

Quasi-free joint measurability

• For each $i=1,...,J$ let $\mathsf{E}_i:\mathscr{F}(\mathbb{R}^{m_i})\to\mathscr{B}_+(\mathscr{H})$ be quasi-free with (\mathbf{S}_i,T_i) . Then: $i=1,...,J$ let $\mathsf{E}_i:\mathscr{F}(\mathbb{R}^{m_i})\to \mathscr{B}_+(\mathscr{H})$ be quasi-free with (\mathbf{S}_i,T_i)

The E_i are jointly measurable *i*

⇔ ∃ hybrid state T s.t. $T_i = T \circ P_i^I$ for all $i = 1,...,J$. ̂

• In this case the pair (S, T) gives a joint observable.

- \Leftrightarrow The E_i have a quasi-free joint observable $\qquad \qquad$ [by covariance]
	- ̂ \bullet \mathbf{P}^T_i $\frac{1}{i}$ for all $i = 1,...,J$

- Quasi-free joint measurability is a marginal problem for hybrid states.
- Joint measurements are generalisations of mixed state localisation.

Joint measurability of isotropic localisations

• A quasi-free observable is isotropic iff its noise state is classical (i.e. a measure).

• $t \mapsto W(\mathbf{St})$ is a unitary group when $\mathbf{S}^T \Omega \mathbf{S} = 0$ (by CCR). The spectral measure of its Stone generator is a "noiseless" isotropic localisation.

- An *isotropic localisation* is an S-covariant observable with $\Omega = -S^{T} \Omega S = 0$.
-
- $S : \mathscr{F}(\mathbb{R}^m) \to \mathscr{B}_+(\mathscr{H})$
- All other cases obtained by convolution with a probability measure:

• **Question**: Take J noiseless isotropic localisations with matrices $\mathbf{S}_i : \mathbb{R}^{m_i} \to \Xi$. For which measures μ_i are their noisy versions μ_1 $^*\mathrm{Q}_{\mathbf{S}_1},~\ldots$, μ_J $^*\mathrm{Q}_{\mathbf{S}_J}$ jointly measurable? S_1 , …, μ_J * **S***J*

$$
(\mu * Q_S)(X) := \int \mu(X - r) Q_S(dr); \qquad (\overline{\mu} *)
$$

 $\mu * Q_S$ is an isotropic localisation with noise state μ .

 $\tilde{\Omega} = -SS^{\dagger}\Omega S = 0$

$$
(\widehat{\mu^*Q_S})(t) = \widehat{\mu}(t)\widehat{Q_S}(t) = \widehat{\mu}(t)W(St)
$$

Joint measurability of isotropic localisations

- $\mathbf{S}_i : \mathbb{R}^{m_i} \to \Xi$ be matrices with $\mathbf{S}_i^{\mathsf{T}}$ $\mathbf{S} = (\mathbf{S}_1 \quad \cdots \quad \mathbf{S}_J)$, assume $\mathrm{rank}\,\mathbf{S} = 2N$
	- (*i*) $\mu_1 * \mathbf{Q}_{\mathbf{S}_1}, \ldots, \mu_n * \mathbf{Q}_{\mathbf{S}_n}$ are jointly measurable; S_1 [,] …, μ_n * **S***n* $\mu_i = \text{tr}[S_i \mathbf{Q}_{-\mathbf{S}_i}(\ \cdot \)]$ where $S_i = \int_{\text{ker}\,\mathbf{S}} \nu(d\mathbf{r}) \; \alpha_{\mathbf{V}_i\mathbf{P}_i\mathbf{r}}(T_{\mathbf{r}})$
	- ν and an integrable positive trace-class valued function $\mathbf{r} \mapsto T_\mathbf{r}$ on $\ker \mathbf{S}$

Here $V_i : \mathbb{R}^{m_i} \to \Xi$ is the matrix with $\text{ran}\,V_i = \text{ran}\,S_i$ and $S_i^{\dagger}V_i = I_m$. $\mathbf{V}_i : \mathbb{R}^{m_i} \to \Xi$ is the matrix with $\mathrm{ranV}_i = \mathrm{ran\,} \mathbf{S}_i$ and \mathbf{S}_i^\intercal \sum_i **V**_{*i*} = **I**_{*m_i*}

• Thm: Let S_i : $\mathbb{R}^{m_i} \to \Xi$ be matrices with $S_i^{\dagger} \Omega S_i = 0$ and μ_i noise measures. *Denote* $S = (S_1 \cdots S_J)$, assume rank $S = 2N$. The following are equivalent: *i* $\boldsymbol{\Omega}\mathbf{S}_i = \mathbf{0}$ and μ_i

(ii) $\mu_i = \text{tr}[S_i \mathbf{Q}_{-\mathbf{S}}(\ \cdot \)]$ where $S_i = \mathbf{I}$ $\nu(d\mathbf{r})$ $\alpha_{\mathbf{V}.\mathbf{P}.\mathbf{r}}(T_{\mathbf{r}})$ for a positive measure and an integrable positive trace-class valued function $\mathbf{r} \mapsto T_{\mathbf{r}}$ on $\ker \mathbf{S}$.

Necessary condition for quadratures

- $Q_{y_i} = y_i^{\mathsf{T}} \mathbf{R} = y_{i1} Q + y_{i2} P$, and let μ_i be probability measures on \mathbb{R} . $\mathbf{y}_i \in \Xi = \mathbb{R}^2$ such that $\text{span}\{\mathbf{y}_1,...,\mathbf{y}_J\} = \Xi$ $= \mathbf{y}_i^{\mathsf{T}}$ *i* $\mathbf{R} = y_{i1}Q + y_{i2}P$, and let μ_i be probability measures on \mathbb{R}^d
- Thm: If μ_1 * $\mathsf{Q}_{\mathbf{y}_1},$ \ldots , μ_J * $\mathsf{Q}_{\mathbf{y}_J}$ are jointly measurable, the noise measures *satisfy the uncertainty relation* \mathbf{y}_1 , ..., μ_J * **y***J J* ∑ *i*=1 $Var(\mu_i) \geq$ 1 2 ∥**Ω** $\widetilde{\widetilde{}}$

Proof: Follows from the general result combined with an UR for multiple quadratures from [1].

‣ Joint measurability requires (at least) certain amount of noise.

$$
\|\mathbf{y}_{2}, \quad \text{where } \tilde{\Omega}_{ij} = -\mathbf{y}_{i}^{T} \Omega \mathbf{y}_{j}.
$$

[1] S. Kechrimparis, S. Weigert, J. Phys. A: Math. Theor. 51 025303 (2018)

• Take $y_i \in \Xi = \mathbb{R}^2$ such that $\text{span}\{y_1, ..., y_J\} = \Xi$. Consider quadratures

Thank you