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Hilbert spaces of holomorphic functions

• In the simplest version quantization is about

Functions on a (symplectic) manifold. ⇝ operators on a Hilbert space
satisfying some “natural” axioms

• This process is often related to representation theory of topological groups
(often Lie groups), Then the simplest way is the integrated representations:

L1(G)→ B(H), φ 7→ π(φ) =

∫
G

φ(x)π(x)dx

or H⊗H = (different topologies) operators H or even B(H) with the action
a · T = π(a)Tπ(a)∗ (getting closer to QHA :))

• Another way is to use reproducing kernel Hilbert spaces H ⊂ L2(M, µ) and a
group G action eading to a unitary representation π on H and L2(M, µ). Then
Toeplitz quantization:

L∞(M) ∋ φ 7→ Tφ ∈ B(H), TφF (x) =

∫
M

φ(m)F (m)K(x ,m)dµ(m)

• K(x ,m) = Km(x) the reproducing kernel

prH : L2 → H, prH(f )(m) =

∫
M

f (y)K(m, y) dµ(y) = ⟨f ,Km⟩
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L2-needed?

Example

The Fock space on Cn with the action of the Heisenberg group or metaplectic
group (or the Jacobi group) and the Bergman spaces on bounded symmetric
domains with the action of coverings of the isometry group.

• Here the role of the L2-space is to provide us with

a Hilbert space where the multiplication operator Mφ : f 7→ φf is well
defined and bounded
The orthogonal projection L2 → H

Leading to: H ↪→ L2 Mφ−→ L2 prH−→ H︸ ︷︷ ︸
Tφ

, φ ∈ L∞(M)

• But there are examples of reproducing kernel Hilbert spaces with a
irreducible unitary representation but

No L2-space
Well defined Toeplitz quantization φ 7→ Tφ, for regular enough symbols:
The analytic continuation of the Bergman spaces/holomorphic discrete
series on bounded domains. Well know for 48 years, but not much used for
Toeplitz operators so far.
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Bergman spaces are associated to bounded domains: Classical bounded
domains are

Type (p ≤ q), n = p + q

Ip,q : {Z ∈ Mp,q(C) | Ip − ZZ∗︸ ︷︷ ︸
K(Z ,Z)

> 0}, I1,n = In,1 = Bn

With action

(
A B
C D

)
Z = (AZ + B)(CZ + D)−1

Kλ(Z ,W ) = det(Ip − ZW ∗)−λ = det(Iq −W ∗Z)−λ

IIn : {Z ∈ Mn,n(C) | In − ZZ∗︸ ︷︷ ︸
K(Z ,Z)

> 0,Z⊤ = Z} = Sp(n,R)/U(n)

IIIn : {Z ∈ Mn,n(C) | In − ZZ∗︸ ︷︷ ︸
K(Z ,Z)

> 0,Z⊤ = −Z} = SO∗(2n)/K

IVn : {z ∈ Cn | |z⊤z |2 + 1− 2z∗z︸ ︷︷ ︸
K(Z ,Z)

> 0, |z⊤z | < 1} = SO(2, n)/SO(n)× SO(2)

(the Lie ball)
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The disk

• Note that D = B1 fits into the series

I1,n = Bn = {z ∈ Cn | ∥z∥ < 1} the unit ball in Cn part of Ip,q

• But, as D ≃ C+ = R+ iR+ is a tube type domain, we can also view it as part

The real case : IIn ≃ Symn(R) + iSym+
n (R)

The complex case : In,n ≃ Symn(C) + iSym+
n (C)

≃ SU(n, n)/S(U(n)×U(n))

Lie ball : IVn ≃ Rn + i

{
y ∈ Rn

∣∣∣∣ y 2
n − (y 2

1 + · · ·+ y 2
n−1) > 0

yn > 0

}
.

Symn(F) = {Z ∈ Mn(F) | Z∗ = Z} and + stands for positive definite.
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Bergman spaces on bounded domains D = G/K and their analytic
continuation

• Bergman spaces A2
λ(D) = O(D) ∩ L2(D, µλ) with µλ a probability measure.

Reproducing kernel Hilbert space of holomorphic functions. Furthermore, there
exists a known polynomial k(z ,w) (= detK(Z ,W ) for the classical domains),
such that k(z , z) > 0 on D and

Kλ(z ,w) = Kλ
w (z) = k(z ,w)aλ+b, a, b known numbers.

• M. Vergne & H. Rossi, Acta Math 1976, H.P. Jakobsen 1983, Wallach 1985,
Ørsted: SU(n, n), Faraut-Koranyi, .... : There is a bigger set where the
reproducing kernel is positive definite, and hence defining a reproducing kernel
Hilbert space of holomorphic functions.
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Ideas

• The kernel Kλ(z ,w) is defined for all λ. The question is: For which λ is
Kλ(z ,w) positive definite.

1) The original idea by Vergne + Rossi: Use the unbounded realization.
Write the reproducing kernel as a Laplace/Fourier transform and use that
to determine the set where Kλ is positive definite.

2) Analytic continuation of the inner product of homogeneous polynomials
and determine the set where the inner product is non-negative.

3) Bernstein polynomial: There exists a differential operator D, a polynomial
b(λ) and a natural number r0 such that

DKλ(z , z) = b(λ)Kλ−r0(z , z)

Good for analytic continuation of Toeplitz operators.

• I will discuss (2) and (3) for the ball.
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Bergman spaces on the ball, parametrized according to rep theory tradition,
λ = α+ n + 1

• For λ > n let

µλ(dz) =
Γ(λ)

n!Γ(λ− n)
(1− ∥z∥2)λ−n−1dz = cλ(1− ∥z∥2)λ−n−1dz

a probability measure on the Ball Bn = {z ∈ Cn | ∥z∥ < 1}. Note

(1− ∥z∥2)−n−1dz is G − invariant.

• Bergman space: A2
λ(Bn) = L2(Bn, µλ) ∩ O(Bn),

• With pβ(z) = zβ1
1 · · · z

β1
n ∈ A2

λ(Bn), β ∈ N0, we have

⟨pβ , pγ⟩λ = δβ,γ
β!Γ(λ)

Γ(λ+ |β|) (= wλ(β)) > 0), λ > 0

Hence for F (z) =
∑

β∈Nn
0
fβpβ(z), G(z) =

∑
β∈Nn

0
gβpβ(z) ∈ O(Bn) we can

define an inner product

⟨F ,G⟩λ :=
∑
β

fβgβwλ(β)
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Method (2): Realization as sequence space

• Leading to a Hilbert space Aλ(Bn) ⊂ O(Bn), λ > 0, isomorphic to the
sequence space

ℓ2(Nn
0,wλ) = {(aβ) |

∑
β

|aβ |2wλ(β) <∞}

and

1) {φλ,β = cλ(β)pβ}β orthonormal basis (onb) for A2
λ(Bn).

2) Reproducing kernel Kλ(z ,w) = (1− ⟨z ,w⟩)−λ.

But: For 0 < λ ≤ n there is no L2(µλ) and hence no projection.
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Idea Yan 2000/for the Ball: Chailuek and Hall, 2009

• Let E =
∑n

j=1 zj
∂

∂zj
the Euler operator and let E =

∑
z j

∂

∂z j
.

• p(z) ∈ Pm(Cn) homogeneous polynomial of degree m ⇒ Ep = mp.

• In particular Epβ = |β|pβ and

(λI+ E) pβ = (λ+ |β|)pβ

which implies that (shift in the parameter!)

⟨pγ ,
(
I+

1

λ
E

)
pβ⟩λ+1 = ⟨

(
I+

1

λ
E

)
pγ , pβ⟩λ+1 = ⟨pγ , pβ⟩λ.

Lemma (CH09)

We have for f , g ∈ L2(µλ) ∩ C 1
b (Bn) (← continuously differentiable with

bounded derivatives) and E±
λ = I± 1

λ
E and similarly Eλ.

1) E−
λ+1(1− |z |

2)λ+1 = E
−
λ+1(1− |z |2)λ+1 = (1− |z |2)λ.

2) If λ > n then ⟨f , g⟩L2(µλ) = ⟨f ,E
+
λ g⟩L2(µλ+1)

= ⟨E+
λ f , g⟩L2(µλ+1)

.
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The differential shift operator

• Define differential operators Am(λ) =
2m−1∏
j=m

E+
λ+j and Bm(λ) =

m−1∏
j=0

E+
λ+j and

note that

Am(λ)Bm(λ) =
2m−1∏
j=0

(
I+

1

λ+ j
E

)
.

Theorem (CH 09)

The following holds for m ∈ N and λ > 0

(0) If F ∈ O(Bn) then F ∈ A2
λ(Bn)⇔ Ej f ∈ A2

λ+2m, ∀0 ≤ j ≤ m.

(1) If F ,G ∈ A2
λ(Bn) then ⟨F ,G⟩λ = ⟨Am(λ)F ,Bm(λ)G⟩λ+2m.

• (1) can be used to give a new characterization of the analytic continuation
of the Bergman spaces and the analytic continuation of the Toeplitz operators.
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Analytic continuation of Toeplitz operators, I

• Start with λ > n and E−
λ (1− |z |

2)λ+1 = (1− |z |2)λ

• φ ∈ C 1
b (Bn)⇒:

Tλ
φF (z) = cλ+1

∫
φ(w)F (w)K(z ,w)E−

λ (1− |w |
2)λ+1dw

= cλ+1

∫
E−,∨

λ (φFK̄z)(w)(1− |w |2)λ+1dw ← partial integration

• Iterating with Dm(λ) = cλ,mE
−,∨
λ · · ·E−,∨

λ+2m−1 we get:

Tλ
φF (z) =

∫
Dm(λ)(φFK̄z)(w)(1− |w |2)λ+2mdw . (1)

with the coefficients of Dm(λ) holomorphic on C \ −N0.
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Analytic continuation of Toeplitz operators, II

Theorem

For λ > 0 let m ∈ N be so that λ+ 2m > n. Denote by C 2m
b (Bn) the space of

the of functions on Bn such that

all derivative Dαφ, |α| ≤ 2m, exists

and are bounded on Bn.

Then (1) is analytic in λ and defines an analytic continuation of
λ 7→ Tλ

φ ∈ B(A2
λ) on (0,∞).

Remark

There is no reason to expect that the norm of Tλ
φ is bounded by ∥φ∥∞ ss the

definition uses derivatives of the symbol. In fact it was shown in [CH09] that
with φ(z) = |z |2. Then there is no constant C > 0 such that

∥Tλ
φ∥ ≤ C∥φ∥∞.
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The group SU(n, 1) ≃ SU(1, n) acting on Bn and the representation

• Let G = SU(n, 1). Write r elements of G as

g = g(A; d ; u, v) =

(
A u
v∗ d

)
, A ∈ Mn(C) and det g = 1, u, v ∈ Cn

• The action of G on Bn is g · z = (v · z + d)−1 (Az + u) and

Bn ≃ G/K , K = U(n) ↪→ SU(n, 1), A 7→
(
A 0
0 1/ detA

)
.

Theorem

Let jλ(g , z) = (v · z + d)λ (if λ is not an integer, then coverings or projective
rep of G). For λ > 0 define

πλ(g)F (z) = jλ(g
−1, z)F (g−1z), F ∈ Aλ(Bn).

Then

jλ(g , z)jλ(g ,w)Kλ(g · z , g · w) = Kλ(z ,w).

πλ defines an irreducible unitary representation of G acting on A2
λ(Bn).
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Connection to rep Theory, Intertwining operators and invariant symbols

• For a measurable function φ : Bn → C and g ∈ G let g · φ = ℓgφ = φ ◦ ℓg−1 .

Definition

H ⊂ G a closed subgroup then φ is H-invariant if for all h ∈ H : h · φ = φ.

• Denote by T H
λ ⊂ B(A2

λ) the C∗-algebra generated by all H-invariant symbols
(with needed smoothness). It is well known that for λ > n

T K
λ is commutative

H maximal abelian ⇒ T H
λ is commutative (Q-B+V, 2007/2008).

• If (π,H) and (ρ,K) are unitary representations of a group H, then
T ∈ B(H,K) is an intertwining operator if Tπ(a) = ρ(a)T, a ∈ H.

• IH(π, ρ) = the space of intertwining operators.

• If π = ρ then I(π) = I(π, π) is a von Neumann algebra.

Lemma

Let λ > 0 and a ∈ G and φ ∈ C 2m
b (Bn). Then

Tλ
φπ(a) = π(a)Tλ

ℓ
a−1φ.
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The proof

Proof.

This is well known (see as an example D-Q-B-0́ 2015) for λ > n. For the
general case let F ∈ A2

λ(Bn), z ∈ Bn then λ > n
(Tλ

φπ(a)F )(z)− (π(a)Tλ
ℓ
a−1φ

F )(z) = 0
The left hand side is analytic in λ, hence = 0 for all λ > 0.

Theorem (Generalized Englis Theorem, Bdarneh 2023)

Let H be a compact subgroup of SU(n, 1). For every λ > 0, the space T λ
H is

dense in I(πλ|H) in the weak and strong operator topology.

• All of this leads to generalization of D–Ó–Q-B, 2015:

Theorem

Let λ > 0. Let H ⊂ G be a closed subgroup and let C 2m
b (Bn)H be the space of

H-invariant symbols. Denote by T λ
H the C∗-algebra generated by

{Tλ
φ | φ ∈ C 2m

b (Bn)}. Then the following holds:

If I(πλ|H) is abelian, then the algebra T λ
H is abelian.

If H is compact, then T λ
H abelian ⇔ I(π|H) abelian.
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How to get the spectrum: Restriction Injectivity

• Let H ⊂ G̃ be a closed subgroup and assume that there exists a point
z0 ∈ Bn such that M = H · z0 is restriction injective: If F ∈ O(Bn) and F |M = 0
then F = 0.

• Let Dλ = jλ(·, z0) and let

χλ = jλ(·, z0)−1|G̃ z0 a homomorphism.

• Defines a line bundle Vλ → M and Dλ ∈ Γ(Vλ) (= space of sections). We
assume that for the moment that, with L = G z0 :

Dλ ∈ L2(Vλ) =

{
f : H → C

∣∣∣∣∣ f (hs) = χλ(s)
−1f (h)

h ∈ H, s ∈ L
,

∫
H/L

|f (h)|2dµM(h) <∞

}
.

• Define Rλ : A2
λ(Bn)→ L2(Vλ) by

RλF (h) = Dλ(h)F (h · z0).

Densely defined and closed. Polar decomposition

R∗
λ : B2

λ(M) := ImRλ → A2
λ(Bn), R∗

λ = Uλ|R∗
λ|.
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RλR
∗
λ

• All the operators commute with the action of H and

R∗
λf (z) = ⟨R∗f ,Kλ

z ⟩ = ⟨f ,RλKz⟩ =
∫
M

f (h)Dλ(h)K(z , hz0)dµM(h)

Hence

RλR
∗
λf (h) =

∫
M

f (x)Dλ(x)Dλ(h)K(z , hz0)dµM(h)

=

∫
M

f (x)jλ(h
−1x , z0)K

λ(h−1x · z0, z0)dµM(h).

Theorem (DÓQ-B)

Let H ⊂ G closed subgroup and φ ∈ C 2m
b (Bn)H . Under the assumption that

Dλ ∈ L2(Vλ) we have that:

1) U∗
λT

λ
φUλ = |Rλ|−1(RλTφR

∗
λ).

2) RλTφR
∗f = f ∗ Φλ,φ, Φλ,φ(h) = ΦH

λ,φ(h) = Dλ(h)⟨φKλ
z0 ,K

λ
h·z0⟩λ.

3) RλR
∗
λf = f ∗ Φλ where Φλ(h) = ΦH

λ(h) = Dλ(h)K
λ
z0(h · z0).

• Note: We do not need the form of the inner product in A2
λ(Bn) except in (3)

and here we can work out the spectrum for big parameters and then use
analytic continuation. 18 / 23
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Examples: The maximal torus

• There are five classes of maximal abelian subgroup in SU(n, 1):

Maximal torus:
Tn = {diag(at1, . . . , atn, a) | a, tj ∈ T, an+1t1 · · · tn = 1} ≃ Tn.

Quasi-elliptic:

En =

{
k(t, a) =

(
diag(at)

a

) ∣∣∣∣ t ∈ Tn, a ∈ T , det k(t, a) = 1

}
Quasi-parabolic:

Pn =

p(t, a, y) =

diag(at)
a ay

a

∣∣∣∣∣∣ t ∈ Tn−1, a ∈ T ,
det p(t, a, y) = 1


Quasi-hyperbolic:

Hn =

ht,a,r =

diag(at)
ar

a/r

∣∣∣∣∣∣ t ∈ Tn−1, a ∈ T ,
r ∈ R+, det h(t, a, r) = 1


Also nilpotent Nn and quasi-nilpotent QNn.

• As mentioned before: Q-B/V: If H = Tn,En,Pn,Hn ⇒ T H is commutative.
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The maximal torus

The simplest example is the maximal torus

T = {diag(at1, . . . , atn, a) | a, tj ∈ T, an+1t1 · · · tn = 1} ≃ Tn.

The corresponding subgroup in G̃ is

T̃n = {v = (t1, . . . , tn, x) ∈ Tn × R | e2π(n+1)ix t1 · · · tn = 1}.

• φ Tn-invariant ⇒ the monomials φβ are eigenvectors for Tφ and

Tλ
φ (F ) =

∑
β

⟨Tλ
φφβ , φβ⟩λ⟨F , φβ⟩λφβ , λ > 0.

• Taking z0 =
1√
2n
(1, . . . , 1) we get

Dλ(v) = e−2πiλx and ΦH
λ(v) = e−2πλx(1− 1

2n

∑
tj)

−λ.
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Example 1: The maximal torus

• As |Dλ| ∈ L2(Tn) for all λ > 0 it follows that the methods from [DÓQ-B]
works for all λ > 0. In particular

1) πλ|H(t, x)f (s) = e2πixλf (t−1x), t, s ∈ Tn, x ∈ R, acting on

2) ImUλ{
∑

β aβsβ | a ∈ C} ⊂ L2(Tn) ≃ A2
λ, the Hardy space and the

Toeplitz operators act by as convolution operators with
Dλ(h)⟨φKλ

z0 ,K
λ
hz0
⟩λ. Take Fourier transform ⇝ acts as multiplication

operators.
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Example: The Quasi-Parabolic case

• In this case

H =

diag

(
at,

(
a(1 + iy

2
) aiy

2
−iay
2

a(1− i y
2
)

)) ∣∣∣∣∣∣
t ∈ Tn−1

an+1t1 · · · tn−1 = 1
y ∈ R

 .

• The orbit through z0 =
1√

2(n−1)
(1, . . . , 1, 0) is

M =

{(
2

2− iy

t√
2(n − 1)

,
iy

2− iy

)∣∣∣∣∣ t ∈ Tn−1, y ∈ R

}

• Dλ(q) = jλ(q, z0) = 2λe−2πiλx(2− iy)−λ ∈ L2(M) iff λ > 1/2.

• The stabilizer is R and

L2(Vλ) = L2(M) ≃ L2(Tn−1 × R)

with the natural action of t and y and x ∈ R acting by e2πiλx .
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Definition of R

• Dy = 1
i

∂

∂y
is densely defined, closed and injective on L2(M) and

Dy (1− iy)−λ = λ(1− iy)−λ−1 ∈ L2 if λ > −1/2.

• Define: R̃λF = DyRλF =
1

i

∂

∂y
DλF |M .

• Rλ interchange πλ|H and the left regular representation. Dy commutes with

translation and hence R̃λ is an intertwining operator, giving us a way to
combine with the Fourier transform to realize Tφ, φ H-invariant, as a
multiplication operator. The spectral function for Tλ

φ is analytic and hence it is
enough to determine it for big λ.

• For all other cases one can use constant coefficient differential operators or
power of the Laplacian ∆ to construct restriction operators to diagonalize
Toeplitz operators with invariant symbols. Everything is explicit and

Quasi-Hyperbolic: λ > 0,

Nilpotent: λ > (n + 1)/2.

Quasi-Nilpotent: λ > n+1−k
4

where k is the dimension of a maximal torus
in H.
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