
N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy Quantum Time–Frequency Analysis

Workshop on Quantum Harmonic Analysis in Hannover

Based on joint work with Franz Luef

August 5, 2024



2 / 16

Notation

We use the following notation:

π(z)f =MωTxf

Vgf(z) = ⟨f, π(z)g⟩
αz(S) = π(z)Sπ(z)∗

Pf(t) = f(−t)
S ⋆ T = tr(Sαz(Ť )),

f ⋆ S =

∫
R2d

f(z)αz(S) dz
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Notation

W (f, g)(z) =

∫
Rd

f(x+ t
2)g(x− t

2) · e
−2πiωt dt

FΩf(z) =

∫
R2d

f(z′)e−2πi(x′ω−xω′)

FW (S)(z) = e−iπx·ωtr(π(−z)S)

FΩ(W (f, g))(z) = eπixωVfg(z)

σf⊗g =W (f, g)

Mp,q(Rd) = {f ∈ S ′ : Vφ0f ∈ Lp,q(R2d)}
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A Projective Representation on Hilbert-Schmidt
Operators

QHA considers unitary representation αz , corresponding to translations
of the Weyl symbol. Decomposition results have thus considered
g-frames due to limitations discretising translations.

Here we consider
projective representation of H×H on the Hilbert-Schmidt operators:

γw,z(S) := π(z)Sπ(w)∗.

For rank one S = f ⊗ g,

γw,z(S) = π(z)f ⊗ π(w)g.

Corresponds to translation and modulation of Weyl symbol:

σγw,zS = cw,zπ(U(w, z)σS

where

U =
(
w1+z1

2 , w2+z2
2 , w2 − z2, z1 − w1

)
.
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What is a Modulation for Operators?

Recalling relation between Weyl symbol and Fourier-Wigner;

FW (βw(S)) = TwFW (S)

Modulation of Weyl symbol is given by

βw(S) := e−iπw1·w2/2π(w2 )Sπ(
w
2 ) = π(w2 )Sπ(−

w
2 )

∗.

Parity operator P plays analogous role to identity operator I in
translation case:

αz(I) = I, βw(I) = e−πiw1wzπ(w) · I
βw(P ) = P, αz/2(P ) = e−πiz1z2π(z) · P
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What is a Modulation for Operators? (cont.)

Given some S ∈ M∞:

S =

∫
R2d

eiπx·ωFW (S)π(z) dz =

∫
R2d

e−iπx·ωσS(
z
2)π(z)P dz.

Just as I is only translation invariant operator, so is P the only
modulation invariant operator. However, for a lattice Λ ⊂ R2d, we can
consider the space of Λ-modulation invariant operators:

LΛ := {T ∈ L(L2) : βλ(T ) = T ∀λ ∈ Λ}.

Just as Λ-translation invariant operators correspond to generalised
Gabor multipliers, Λ-modulation invariant operators correspond to
Fourier-Wigner periodisations ofM1 operators, and as such have
discretisation in terms of shifted parity operators.
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What is a Modulation for Operators? (cont.)

Λ-modulation invariant operators are then reconstructable from a
discretised convolution with appropriate S;

T =
1

σS(0)

∑
Λ◦

cλ◦T ⋆ S(λ◦)π(2λ◦)P.

We have also a Janssen type discrete representation of T in terms of
shifted parity operators, and the symbol calculus

FW (S)FW (T ) = FΩFW (ST )

for appropriate Λ.
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Matrix Coefficients and Integrated Representation
Given our representation γw,z : S 7→ π(z)Sπ(w)∗, can consider the
matrix coefficients and integrated representation:

QST (w, z) := ⟨T, γw,z(S)⟩HS

Q∗
SF :=

∫
R4d

F (w, z)γw,z(S)dz dw

Have then reconstruction formula, if S =
∑

n fn ⊗ gn and
T =

∑
n ψn ⊗ ϕn:

Q∗
SQST =

∫
R4d

∑
n,m

Vfnψm(z) · Vgnϕm(w) · γw,z(S) dz dw

=
∑
i,n,m

(∫
R2d

Vfnψm(z)π(z)fi dz

)
⊗
(∫

R2d

Vgnϕm(w)π(w)gi dw

)
= ∥S∥HS · T
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The Rank–One cases

If S = f ⊗ g, then QST is the (cont.) Gabor matrix [4] [2] [1]

QST = ⟨Tπ(w)g, π(z)f⟩L2 .

In particular, taking Gabor frame atoms f, g generates a frame for HS.

Given mask F ∈ L2(R4d),

Q∗
SF =

∫
R4d

F (w, z)γw,z(S) dw dz

is the "bilocalisation operator" [3].The reproducing property is used in
the rank one case in [5] to show decay properties for Schwartz
operators.
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Extending toMp,q Spaces
Considering now dual pairing (S,S′), with associated dual action of
projective tensor product space given by the generalised trace. Then
define the polarised Cohen’s class as

QST (w, z) = ⟨T, γw,z(S)⟩S′,S.

Recall that σγw,z(S) = cw,zπ(U(w, z))σS , where U is unitary. Thus, starting
with the p = q = 1 case, the spaceM1 is given by

M1 := {S ∈ S′ : QSS ∈ L1(R4d)}.

Mp,q spaces are then given by

Mp,q := {T ∈ S′ : QST ∈ Lp,q(R4d)}

for any S ∈ M1, and satisfy the coorbit correspondence property

F = QST ⇐⇒ F ⃝∗ QSS = F

where⃝∗ is the tensorisation of the twisted convolution, and S ∈ M1

with ∥S∥HS = 1.
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Gabor Frames for Operators
We say that S generates a Gabor frame for HS on Λ×M if the set

{γλ,µ(S)}(λ,µ)∈Λ×M

is a frame for HS. Have for example, if f, g generate Gabor frames on
M,Λ respectively, then f ⊗ g generates operator Gabor frame on
Λ×M .

As in the function case, have characterisation

T ∈ Mp,q ⇐⇒ {QST}Λ×M ∈ ℓp,q(Λ×M)

for an S ∈ M1 which generates a Gabor frame on Λ×M .Given some
T ∈ Mp,q, we have a decomposition

T =
∑
n∈N

snϕn ⊗ ψn,

where {sn}N ∈ ℓq, ϕn ∈M1(Rd) and ψn ∈Mp(Rd) normalised.
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Properties ofMp,q Spaces

Since U is unitary,Mp corresponds to operators with symbols in
Mp(R2d).
Generally,Mp,q(R2d) do not correspond to symbols in a modulation
space, due to U . Can consider the spacesMp,q asMp(Rd)–valued
modulation spaces in the sense of [6].

Consider the Banach-Gelfand
triple (M1,HS,M∞). Have

M1 = N (M∞(Rd);M1(Rd))

M2 = HS
M∞ = L(M1(Rd);M∞(Rd)))

Natural to ask if theMp spaces have some similar description?
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Banach Space Description ofMp spaces

Cannot extend p-nuclearity to p > 1. Instead consider p-summing
operators Πp(X,Y ), the operators T for which(∑

i

∥Txi∥pY

)
≤ cT sup

∥x∗∥=1

∑
i

|x∗(xi)|p

for every finite sequence x = {xi}Ni=1 of elements in X.

Then using a
Gabor operator frame, we can show that

Mp,q ⊂ Πq(Mp′(Rd);M q(Rd)).

Don’t have the reverse characterisation outside of the Banach-Gelfand
triple!
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Mp,q spaces and Weyl symbols

In general we don’t have a nice correspondence. But we can consider
inclusion relations. Given T ∈ Mp,1, the symbol of T is inM1,p(R2d):

∥σT ∥M1,p = ∥QST (U
−1(w, z))∥L1,p

≤
∑
n∈N

|sn| ·
∥∥∥Vφϕn(w +

Jz

2

)
Vφψn

(
w − Jz

2

)∥∥∥
L1,p

Conversely, if σT ∈M∞,q(R2d), then T ∈ Mq,∞.

By recognisingMp,q

spaces as Banach–valued modulation spaces, we can use interpolation
to show that if p ≤ q, T ∈ Mq,p =⇒ σT ∈Mp,q(R2d). Conversly, for q ≤ p,
σT ∈Mp,q(R2d) =⇒ T ∈ Mq,p.
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Thank You
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