

Quantum Time-Frequency Analysis

Workshop on Quantum Harmonic Analysis in Hannover

Based on joint work with Franz Luef

August 5, 2024

Notation

We use the following notation:

$$\begin{aligned} \pi(z)f &= M_{\omega}T_{x}f\\ V_{g}f(z) &= \langle f, \pi(z)g \rangle\\ \alpha_{z}(S) &= \pi(z)S\pi(z)^{*}\\ Pf(t) &= f(-t)\\ S\star T &= \operatorname{tr}(S\alpha_{z}(\check{T})),\\ f\star S &= \int_{\mathbb{R}^{2d}} f(z)\alpha_{z}(S)\,dz \end{aligned}$$

2/16

$$W(f,g)(z) = \int_{\mathbb{R}^d} f(x + \frac{t}{2})\overline{g(x - \frac{t}{2})} \cdot e^{-2\pi i\omega t} dt$$

$$\mathcal{F}_{\Omega}f(z) = \int_{\mathbb{R}^{2d}} f(z')e^{-2\pi i(x'\omega - x\omega')}$$

$$\mathcal{F}_W(S)(z) = e^{-i\pi x \cdot \omega} tr(\pi(-z)S)$$

$$\mathcal{F}_{\Omega}(W(f,g))(z) = e^{\pi i x \omega} V_f g(z)$$

$$\sigma_{f\otimes g} = W(f,g)$$

$$M^{p,q}(\mathbb{R}^d) = \{ f \in \mathscr{S}' : V_{\varphi_0} f \in L^{p,q}(\mathbb{R}^{2d}) \}$$

A Projective Representation on Hilbert-Schmidt Operators

QHA considers unitary representation α_z , corresponding to translations of the Weyl symbol. Decomposition results have thus considered g-frames due to limitations discretising translations.

A Projective Representation on Hilbert-Schmidt Operators

QHA considers unitary representation α_z , corresponding to translations of the Weyl symbol. Decomposition results have thus considered g-frames due to limitations discretising translations. Here we consider projective representation of $\mathbb{H} \times \mathbb{H}$ on the Hilbert-Schmidt operators:

$$\gamma_{w,z}(S) := \pi(z) S \pi(w)^*.$$

For rank one $S = f \otimes g$,

$$\gamma_{w,z}(S) = \pi(z)f \otimes \pi(w)g.$$

NTNU

A Projective Representation on Hilbert-Schmidt Operators

QHA considers unitary representation α_z , corresponding to translations of the Weyl symbol. Decomposition results have thus considered g-frames due to limitations discretising translations. Here we consider projective representation of $\mathbb{H} \times \mathbb{H}$ on the Hilbert-Schmidt operators:

$$\gamma_{w,z}(S) := \pi(z) S \pi(w)^*.$$

For rank one $S = f \otimes g$,

$$\gamma_{w,z}(S) = \pi(z)f \otimes \pi(w)g.$$

Corresponds to translation and modulation of Weyl symbol:

$$\sigma_{\gamma_{w,z}S} = c_{w,z}\pi(U(w,z)\sigma_S)$$

where

$$U = \left(\frac{w_1 + z_1}{2}, \frac{w_2 + z_2}{2}, w_2 - z_2, z_1 - w_1\right).$$

4/16

What is a Modulation for Operators?

Recalling relation between Weyl symbol and Fourier-Wigner;

 $\mathcal{F}_W(\beta_w(S)) = T_w \mathcal{F}_W(S)$

Modulation of Weyl symbol is given by

$$\beta_w(S) := e^{-i\pi w_1 \cdot w_2/2} \pi(\frac{w}{2}) S \pi(\frac{w}{2}) = \pi(\frac{w}{2}) S \pi(-\frac{w}{2})^*.$$

What is a Modulation for Operators?

Recalling relation between Weyl symbol and Fourier-Wigner;

 $\mathcal{F}_W(\beta_w(S)) = T_w \mathcal{F}_W(S)$

Modulation of Weyl symbol is given by

$$\beta_w(S) := e^{-i\pi w_1 \cdot w_2/2} \pi(\frac{w}{2}) S \pi(\frac{w}{2}) = \pi(\frac{w}{2}) S \pi(-\frac{w}{2})^*.$$

Parity operator P plays analogous role to identity operator I in translation case:

$$\alpha_z(I) = I, \quad \beta_w(I) = e^{-\pi i w_1 w_z} \pi(w) \cdot I$$

$$\beta_w(P) = P, \quad \alpha_{z/2}(P) = e^{-\pi i z_1 z_2} \pi(z) \cdot P$$

NTNU

What is a Modulation for Operators? (cont.)

Given some $S \in \mathcal{M}^{\infty}$:

$$S = \int_{\mathbb{R}^{2d}} e^{i\pi x \cdot \omega} \mathcal{F}_W(S) \pi(z) \, dz = \int_{\mathbb{R}^{2d}} e^{-i\pi x \cdot \omega} \sigma_S(\frac{z}{2}) \pi(z) P \, dz.$$

What is a Modulation for Operators? (cont.)

Given some $S \in \mathcal{M}^{\infty}$:

$$S = \int_{\mathbb{R}^{2d}} e^{i\pi x \cdot \omega} \mathcal{F}_W(S) \pi(z) \, dz = \int_{\mathbb{R}^{2d}} e^{-i\pi x \cdot \omega} \sigma_S(\frac{z}{2}) \pi(z) P \, dz.$$

Just as *I* is only translation invariant operator, so is *P* the only modulation invariant operator. However, for a lattice $\Lambda \subset \mathbb{R}^{2d}$, we can consider the space of Λ -modulation invariant operators:

$$\mathcal{L}_{\Lambda} := \{ T \in \mathcal{L}(L^2) : \beta_{\lambda}(T) = T \,\forall \lambda \in \Lambda \}.$$

Just as Λ -translation invariant operators correspond to generalised Gabor multipliers, Λ -modulation invariant operators correspond to Fourier-Wigner periodisations of \mathcal{M}^1 operators, and as such have discretisation in terms of shifted parity operators.

What is a Modulation for Operators? (cont.)

 Λ -modulation invariant operators are then reconstructable from a discretised convolution with appropriate S;

$$T = \frac{1}{\sigma_S(0)} \sum_{\Lambda^{\circ}} c_{\lambda^{\circ}} T \star S(\lambda^{\circ}) \pi(2\lambda^{\circ}) P.$$

We have also a Janssen type discrete representation of T in terms of shifted parity operators, and the symbol calculus

$$\mathcal{F}_W(S)\mathcal{F}_W(T) = \mathcal{F}_\Omega \mathcal{F}_W(ST)$$

for appropriate Λ .

NTNU

Matrix Coefficients and Integrated Representation

Given our representation $\gamma_{w,z} : S \mapsto \pi(z)S\pi(w)^*$, can consider the matrix coefficients and integrated representation:

$$Q_S T(w, z) := \langle T, \gamma_{w, z}(S) \rangle_{\mathcal{HS}}$$
$$Q_S^* F := \int_{\mathbb{R}^{4d}} F(w, z) \gamma_{w, z}(S) dz \, dw$$

D NTNU

Matrix Coefficients and Integrated Representation

Given our representation $\gamma_{w,z} : S \mapsto \pi(z)S\pi(w)^*$, can consider the matrix coefficients and integrated representation:

$$Q_S T(w, z) := \langle T, \gamma_{w, z}(S) \rangle_{\mathcal{HS}}$$
$$Q_S^* F := \int_{\mathbb{R}^{4d}} F(w, z) \gamma_{w, z}(S) dz \, dw$$

Have then reconstruction formula, if $S = \sum_n f_n \otimes g_n$ and $T = \sum_n \psi_n \otimes \phi_n$:

$$Q_{S}^{*}Q_{S}T = \int_{\mathbb{R}^{4d}} \sum_{n,m} V_{f_{n}}\psi_{m}(z) \cdot \overline{V_{g_{n}}\phi_{m}(w)} \cdot \gamma_{w,z}(S) \, dz \, dw$$
$$= \sum_{i,n,m} \left(\int_{\mathbb{R}^{2d}} V_{f_{n}}\psi_{m}(z)\pi(z)f_{i} \, dz \right) \otimes \left(\int_{\mathbb{R}^{2d}} V_{g_{n}}\phi_{m}(w)\pi(w)g_{i} \, dw \right)$$
$$= \|S\|_{\mathcal{HS}} \cdot T$$

The Rank-One cases

If $S = f \otimes g$, then $Q_S T$ is the (cont.) Gabor matrix [4] [2] [1]

 $Q_S T = \langle T\pi(w)g, \pi(z)f \rangle_{L^2}.$

In particular, taking Gabor frame atoms f, g generates a frame for \mathcal{HS} .

The Rank-One cases

If $S = f \otimes g$, then $Q_S T$ is the (cont.) Gabor matrix [4] [2] [1]

$$Q_S T = \langle T\pi(w)g, \pi(z)f \rangle_{L^2}.$$

In particular, taking Gabor frame atoms f,g generates a frame for \mathcal{HS} . Given mask $F \in L^2(\mathbb{R}^{4d})$,

$$Q_S^*F = \int_{\mathbb{R}^{4d}} F(w, z) \gamma_{w, z}(S) \, dw \, dz$$

is the "bilocalisation operator" [3].

The Rank-One cases

If $S = f \otimes g$, then $Q_S T$ is the (cont.) Gabor matrix [4] [2] [1]

 $Q_S T = \langle T\pi(w)g, \pi(z)f \rangle_{L^2}.$

In particular, taking Gabor frame atoms f,g generates a frame for \mathcal{HS} . Given mask $F \in L^2(\mathbb{R}^{4d})$,

$$Q_S^*F = \int_{\mathbb{R}^{4d}} F(w, z) \gamma_{w, z}(S) \, dw \, dz$$

is the "bilocalisation operator" [3].The reproducing property is used in the rank one case in [5] to show decay properties for Schwartz operators.

Extending to $\mathcal{M}^{p,q}$ Spaces

Considering now dual pairing $(\mathfrak{S}, \mathfrak{S}')$, with associated dual action of projective tensor product space given by the generalised trace. Then define the polarised Cohen's class as

 $Q_S T(w, z) = \langle T, \gamma_{w, z}(S) \rangle_{\mathfrak{S}', \mathfrak{S}}.$

Extending to $\mathcal{M}^{p,q}$ Spaces

Considering now dual pairing $(\mathfrak{S}, \mathfrak{S}')$, with associated dual action of projective tensor product space given by the generalised trace. Then define the polarised Cohen's class as

$$Q_S T(w, z) = \langle T, \gamma_{w, z}(S) \rangle_{\mathfrak{S}', \mathfrak{S}}.$$

Recall that $\sigma_{\gamma_{w,z}(S)} = c_{w,z}\pi(U(w,z))\sigma_S$, where U is unitary. Thus, starting with the p = q = 1 case, the space \mathcal{M}^1 is given by

 $\mathcal{M}^1 := \{ S \in \mathfrak{S}' : Q_S S \in L^1(\mathbb{R}^{4d}) \}.$

Extending to $\mathcal{M}^{p,q}$ Spaces

Considering now dual pairing $(\mathfrak{S}, \mathfrak{S}')$, with associated dual action of projective tensor product space given by the generalised trace. Then define the polarised Cohen's class as

 $Q_S T(w, z) = \langle T, \gamma_{w, z}(S) \rangle_{\mathfrak{S}', \mathfrak{S}}.$

Recall that $\sigma_{\gamma_{w,z}(S)} = c_{w,z}\pi(U(w,z))\sigma_S$, where U is unitary. Thus, starting with the p = q = 1 case, the space \mathcal{M}^1 is given by

$$\mathcal{M}^1 := \{ S \in \mathfrak{S}' : Q_S S \in L^1(\mathbb{R}^{4d}) \}.$$

 $\mathcal{M}^{p,q}$ spaces are then given by

$$\mathcal{M}^{p,q} := \{ T \in \mathfrak{S}' : Q_S T \in L^{p,q}(\mathbb{R}^{4d}) \}$$

for any $S \in \mathcal{M}^1$, and satisfy the coorbit correspondence property

$$F = Q_S T \iff F \circledast Q_S S = F$$

where \circledast is the tensorisation of the twisted convolution, and $S \in \mathcal{M}^1$ with $||S||_{\mathcal{HS}} = 1$.

10/16

Gabor Frames for Operators

We say that S generates a Gabor frame for \mathcal{HS} on $\Lambda\times M$ if the set

 $\{\gamma_{\lambda,\mu}(S)\}_{(\lambda,\mu)\in\Lambda\times M}$

is a frame for \mathcal{HS} . Have for example, if f, g generate Gabor frames on M, Λ respectively, then $f \otimes g$ generates operator Gabor frame on $\Lambda \times M$.

Gabor Frames for Operators

We say that S generates a Gabor frame for \mathcal{HS} on $\Lambda\times M$ if the set

 $\{\gamma_{\lambda,\mu}(S)\}_{(\lambda,\mu)\in\Lambda\times M}$

is a frame for \mathcal{HS} . Have for example, if f, g generate Gabor frames on M, Λ respectively, then $f \otimes g$ generates operator Gabor frame on $\Lambda \times M$. As in the function case, have characterisation

$$T \in \mathcal{M}^{p,q} \iff \{Q_S T\}_{\Lambda \times M} \in \ell^{p,q}(\Lambda \times M)$$

for an $S \in \mathcal{M}^1$ which generates a Gabor frame on $\Lambda \times M$.

Gabor Frames for Operators

We say that S generates a Gabor frame for \mathcal{HS} on $\Lambda\times M$ if the set

 $\{\gamma_{\lambda,\mu}(S)\}_{(\lambda,\mu)\in\Lambda\times M}$

is a frame for \mathcal{HS} . Have for example, if f, g generate Gabor frames on M, Λ respectively, then $f \otimes g$ generates operator Gabor frame on $\Lambda \times M$. As in the function case, have characterisation

$$T \in \mathcal{M}^{p,q} \iff \{Q_S T\}_{\Lambda \times M} \in \ell^{p,q}(\Lambda \times M)$$

for an $S \in \mathcal{M}^1$ which generates a Gabor frame on $\Lambda \times M$. Given some $T \in \mathcal{M}^{p,q}$, we have a decomposition

$$T = \sum_{n \in \mathbb{N}} s_n \phi_n \otimes \psi_n,$$

where $\{s_n\}_N \in \ell^q$, $\phi_n \in M^1(\mathbb{R}^d)$ and $\psi_n \in M^p(\mathbb{R}^d)$ normalised.

11/16

Properties of $\mathcal{M}^{p,q}$ Spaces

Since U is unitary, \mathcal{M}^p corresponds to operators with symbols in $M^p(\mathbb{R}^{2d})$. Generally, $M^{p,q}(\mathbb{R}^{2d})$ do *not* correspond to symbols in a modulation space, due to U. Can consider the spaces $\mathcal{M}^{p,q}$ as $M^p(\mathbb{R}^d)$ -valued modulation spaces in the sense of [6].

Properties of $\mathcal{M}^{p,q}$ Spaces

Since U is unitary, \mathcal{M}^p corresponds to operators with symbols in $M^p(\mathbb{R}^{2d})$.

Generally, $M^{p,q}(\mathbb{R}^{2d})$ do *not* correspond to symbols in a modulation space, due to U. Can consider the spaces $\mathcal{M}^{p,q}$ as $M^p(\mathbb{R}^d)$ -valued modulation spaces in the sense of [6].Consider the Banach-Gelfand triple $(\mathcal{M}^1, \mathcal{HS}, \mathcal{M}^\infty)$. Have

$$\mathcal{M}^{1} = \mathcal{N}(M^{\infty}(\mathbb{R}^{d}); M^{1}(\mathbb{R}^{d}))$$
$$\mathcal{M}^{2} = \mathcal{HS}$$
$$\mathcal{M}^{\infty} = \mathcal{L}(M^{1}(\mathbb{R}^{d}); M^{\infty}(\mathbb{R}^{d})))$$

Natural to ask if the \mathcal{M}^p spaces have some similar description?

Banach Space Description of \mathcal{M}^p spaces

Cannot extend *p*-nuclearity to p > 1. Instead consider *p*-summing operators $\Pi^p(X, Y)$, the operators *T* for which

$$\left(\sum_{i} \|Tx_{i}\|_{Y}^{p}\right) \leq c_{T} \sup_{\|x^{*}\|=1} \sum_{i} |x^{*}(x_{i})|^{p}$$

for every finite sequence $x = \{x_i\}_{i=1}^N$ of elements in X.

Banach Space Description of \mathcal{M}^p spaces

Cannot extend *p*-nuclearity to p > 1. Instead consider *p*-summing operators $\Pi^p(X, Y)$, the operators *T* for which

$$\left(\sum_{i} \|Tx_{i}\|_{Y}^{p}\right) \leq c_{T} \sup_{\|x^{*}\|=1} \sum_{i} |x^{*}(x_{i})|^{p}$$

for every finite sequence $x=\{x_i\}_{i=1}^N$ of elements in X. Then using a Gabor operator frame, we can show that

$$\mathcal{M}^{p,q} \subset \Pi^q(M^{p'}(\mathbb{R}^d); M^q(\mathbb{R}^d)).$$

Don't have the reverse characterisation outside of the Banach-Gelfand triple!

$\mathcal{M}^{p,q}$ spaces and Weyl symbols

In general we don't have a nice correspondence. But we can consider inclusion relations. Given $T \in \mathcal{M}^{p,1}$, the symbol of T is in $M^{1,p}(\mathbb{R}^{2d})$:

$$\begin{aligned} \|\sigma_T\|_{M^{1,p}} &= \|Q_S T(U^{-1}(w,z))\|_{L^{1,p}} \\ &\leq \sum_{n \in \mathbb{N}} |s_n| \cdot \left\| V_{\varphi} \phi_n \left(w + \frac{Jz}{2} \right) \overline{V_{\varphi} \psi_n \left(w - \frac{Jz}{2} \right)} \right\|_{L^{1,p}} \end{aligned}$$

Conversely, if $\sigma_T \in M^{\infty,q}(\mathbb{R}^{2d})$, then $T \in \mathcal{M}^{q,\infty}$.

$\mathcal{M}^{p,q}$ spaces and Weyl symbols

In general we don't have a nice correspondence. But we can consider inclusion relations. Given $T \in \mathcal{M}^{p,1}$, the symbol of T is in $M^{1,p}(\mathbb{R}^{2d})$:

$$\begin{aligned} \|\sigma_T\|_{M^{1,p}} &= \|Q_S T(U^{-1}(w,z))\|_{L^{1,p}} \\ &\leq \sum_{n \in \mathbb{N}} |s_n| \cdot \left\| V_{\varphi} \phi_n \left(w + \frac{Jz}{2} \right) \overline{V_{\varphi} \psi_n \left(w - \frac{Jz}{2} \right)} \right\|_{L^{1,p}} \end{aligned}$$

Conversely, if $\sigma_T \in M^{\infty,q}(\mathbb{R}^{2d})$, then $T \in \mathcal{M}^{q,\infty}$. By recognising $\mathcal{M}^{p,q}$ spaces as Banach–valued modulation spaces, we can use interpolation to show that if $p \leq q$, $T \in \mathcal{M}^{q,p} \implies \sigma_T \in M^{p,q}(\mathbb{R}^{2d})$. Conversly, for $q \leq p$, $\sigma_T \in M^{p,q}(\mathbb{R}^{2d}) \implies T \in \mathcal{M}^{q,p}$.

Thank You

References

P. Balazs.

Hilbert-schmidt operators and frames - classification, approximation by multipliers and algorithms. *International Journal of Wavelets, Multiresolution and Information Processing*, 6, 2008.

- P. Balazs, K. Gröchenig, and M. Speckbacher. Kernel theorems in coorbit theory. *Transactions of the AMS, Series B*, 6(2), 2019.
- P. Boggiatto and G. Garello.
 An extension of localization operators.
 Journal of Pseudo-Differential Operators and Applications, 15(1):12, 2024.

🔋 K. Gröchenig.

Time-frequency analysis of sjöstrand's class. *Revista matemática iberoamericana*, 22(2):703–724, 2006.