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The Wigner distribution

▶ Given f ∈ L2(Rd) we define the Wigner distribution by

W (f )(z) = W (f )(x , ω) =

∫
Rd

f (x +
t

2
)f (x − t

2
)e−2πi⟨t,ω⟩ dt.

▶ The cross-Wigner distribution is defined by∫
Rd f (x + t

2)g(x − t
2)e

−2πi⟨t,ω⟩ dt.

▶ Marginal properties:∫
Rd W (f )(x , ω) dx = |f̂ (ω)|2,

∫
Rd W (f )(x , ω) dω = |f (x)|2.

▶ However, the Wigner function is in general not positive!
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Cohen’s class distributions

▶ Solution: Convolve with a nice function σ ∈ S ′(R2d).

▶ Cohen’s class:
{
Q(f ) = W (f ) ∗ σ : σ ∈ S ′(R2d)

}
.

▶ Contains all weakly continuous, covariant quadratic time-frequency
representations.

Q(π(z0)f )(z) = Q(f )(z − z0), |Q(f , g)(0)| ≤ ∥f ∥2∥g∥2.
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The localization problem for Cohen’s class

▶ Given a set Ω ⊂ R2d and a Q in Cohen’s class, find a signal in L2(Rd)
with ∥f ∥2 = 1 that maximizes∫

Ω
Q(f ) dz .

▶ The choice σ(z) = Amb(g)(z) = eπi⟨x ,ω⟩Vgg(z) =

eπi⟨x ,ω⟩
∫
Rd g(t)g(t − x)e−2πi⟨x ,ω⟩ dz , for g ∈ L2(Rd) gives the

spectrogram: Qσ(z) = |Vg f (z)|2.
▶ Spectrogram localization problem: Maximize∫

Ω
|Vg f (z)|2 dz .
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Cohen’s class from the QHA viewpoint

▶ Time-frequency shift: π(z)f (t) = π(x , ω)f (t) = f (t − x)e2πi⟨ω,t⟩.
▶ Parity operator: Pf (t) = f (−t).
▶ Operator shift: αz(S) = π(z)Sπ(z)∗.
▶ Operator inversion Š = PSP.

▶ Function-operator convolution: f ⋆ S =
∫
R2d f (z)αz(S) dz .

▶ Operator-operator convolution: S ⋆ T (z) = tr(Sαz(Ť )).

▶ Fourier-Wigner transform: FW (S)(z) = e−πi⟨x ,ω⟩tr(π(−z)S).
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Cohen’s class as convolutions

Proposition (Luef-Skrettingland, 2019)
For ϕ ∈ S ′(R2d), its Cohen’s class distribution is given by

Qϕ(f ) = (f ⊗ f ) ⋆ Lϕ,

where (f ⊗ f )(g) = ⟨g , f ⟩f and Lϕ is the Weyl transform, the operator
defined weakly by

⟨Lϕf , g⟩ = ⟨ϕ,W (f , g)⟩.

▶ So any operator S with Schwartz kernel defines a Cohen’s class
distribution via the formula

QS(f ) = (f ⊗ f ) ⋆ Š .
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A general solution

Lemma (Luef-Skrettingland, 2019)
Let Ω ⊂ R2d be measurable, and let S be an operator such that the
operator χΩ ⋆ S is compact. Let λ1 ≥ λ2 ≥ . . . denote its positive
eigenvalues in decreasing order, and let fi be the eigenfunction
corresponding to λi . Then the eigenfunctions solve the localization
problem in the sense that

λi =

∫
Ω
QS(fi )(z) dz = max

{∫
Ω
QS(f )(z) dz : f ⊥ {f1, f2 . . . fi−1}

}
.

▶ So we can solve the localization problem by solving the eigenvalue
problem for the convolution χΩ ⋆ S .
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Another look at the spectrogram localization problem

▶ The case S = g ⊗ g gives QS(f )(z) = |Vg f (z)|2.
▶ The corresponding convolution χΩ ⋆ (g ⊗ g) gives a localization

operator:

χΩ ⋆ (g ⊗ g)f =

∫
Ω
Vg f (z)π(z)g dz = Ag

Ωf .
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Daubechies’ theorem

Theorem (Daubechies, 1988)
Let g be the Gaussian ϕ0 = 21/4e−πt2 and DR a disc of radius R centered
at 0. The eigenfunctions of the localization operator Aϕ0

DR
are the

Hermite functions:

ϕn(t) =
21/4
√
n!

(
− 1

2
√
π

)n

eπt
2 dn

dtn
e−2πt2 .

The corresponding eigenvalue is

λn =

∫ πR2

0

rn

n!
e−r dr .
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A first extension

Theorem (Abreu-Gröchenig-Romero,2019,)
Let DR be a disc of radius R centered at 0, and let k ∈ N0. The
eigenfunctions of the localization operator Aϕk

DR
are the Hermite

functions: {ϕn}n∈N0 The corresponding eigenvalues are

λn =
k!

n!

∫ πR2

0
rn−ke−r

(
Ln−k
k (r)

)2
dr .

The Laguerre polynomials are given by

Lαk (t) =
k∑

j=0

(−1)k
(
k + α

k − j

)
t j

j!
.
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Reinhardt domains

▶ The higher-dimensional condition on Ω is that χΩ is polyradial, that
is

χΩ(x1, x2, . . . , xd , ω1, ω2, . . . , ωd) = F0(|z1|, |z2|, . . . , |zd |).

▶ These are the Reinhardt domains.
▶ Ω is Reinhardt if there is aW ⊆ Rd

+ such that

z ∈ Ω ⇐⇒ (|z1|, |z2|, . . . |zd |) ∈ W .

▶ Ω is thin at infinity if for all R > 0,

lim
|z|→∞

|Ω ∩ B(z ,R)| = 0.
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An unbounded set that is thin at infinity

Figure: The set {(x , ω) ∈ R2 :
∣∣x4/3 − y2

∣∣ < 1}.
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Reinhardt domains in R4
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Daubechies’ theorem for Hermite functions, higher
dimensions

Proposition
Let Ω ⊂ R2d be a Reinhardt domain with shadowW , and assume that Ω
is thin at infinity. Let k ∈ Nd

0 . The eigenfunctions of the localization
operator Aϕk

Ω are the Hermite functions, {ϕn}n∈Nd
0
and the

corresponding eigenvalues are

λn,k(W ) = (2π)d
k!

n!
π|n−k|

∫
W

r2n−2k+1e−π|r |2

 d∏
j=1

L
nj−kj
kj

(πr2
j )

2

dr .
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Double orthogonality
▶ The eigenfunctions {fn} of a localization operator Ag

Ω can be
characterized via double orthogonality, that is, the satisfaction of the
two requirements ∫

R2d
Vg fn(z)Vg fm(z) dz = δn,m.

and ∫
Ω
Vg fn(z)Vg fm(z) dz = λnδn,m.

▶ From Daubechies’ theorem we have the double orthogonality
relation for Hermite functions over Reinhardt domains:∫

Ω
Vϕk

ϕn(z)Vϕk
ϕm(z) dz = λn,k(W )δn,m.
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Hagedorn wavepackets

▶ The ladder operators: A†
k f (t) =

√
πtk f (t)− 1

2
√
π

∂f
∂tk

(t) generate the
Hermite functions via ϕn = 1√

n!

(
A†)n ϕ0.

▶ Lagrangian frame: Q,P ∈ Gl(d ,C) such that

QTP − PTQ = 0, Q∗P − P∗Q = 2iIdd .

▶ Equivalent to T =

(
Re(Q) Im(Q)
Re(P) Im(P)

)
being symplectic.

▶ Generalized Gaussian: ϕ0[Q,P](t) = 2d/4det(Q)−1/2eπi⟨t,PQ
−1t⟩.
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Hagedorn wavepackets

▶ Generalized ladder operators: A†[Q,P] =
√
πi
(
P∗ · t + Q∗ ( i∇

2π

))
.

▶ The k-th component acts by

A†
k [Q,P]f (t) =

√
πi

(
d∑

l=1

plktl f (t) +
i

2π
qlk

∂f

∂tl
(t)

)
.

▶ The Hagedorn wavepackets: ϕn[Q,P] = 1√
n!

(
A†[Q,P]

)n
ϕ0[Q,P].

▶ Inherits several properties of the Hermite functions:
Orthonormality, three-term recurrence, Laguerre connection.

▶ Q = Idd ,P = iIdd gives the Hermite functions, Q, iP real gives
rotated and dilated Hermite functions.
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Hagedorn wavepackets in phase space

Lemma (Lasser-Troppmann, 2014,)
Let k, n ∈ Nd

0 , let [Q,P] be a Lagrangian frame and T the corresponding
symplectic matrix. We have

Vϕk [Q,P]ϕn[Q,P](x , ω) = e−πi⟨x ,ω⟩e−
π
2 |ζ|

2
d∏

j=1

Hnj ,kj (ζj),

where ζ = ζ(x , ω) = −iPT x + iQTω = T−1
(
x
ω

)
, and Hnj ,kj is the

corresponding complex Hermite polynomial.
▶ So

∣∣Vϕk [Q,P]ϕn[Q,P](x , ω)| = |Vϕk
ϕn(T

−1(x , ω))
∣∣!
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Daubechies’ theorem for Hagedorn wavepackets
Proposition (S.)
Let Ω be a Reinhardt domain that is thin at infinity. Let [Q,P] be a
Lagrangian frame, T the corresponding symplectic matrix and let
k ∈ Nd

0 .
The Hagedorn wavepackets {ϕn[Q,P]}n∈Nd

0
satisfy the double

orthogonality condition∫
T (Ω)

Vϕk [Q,P]ϕn[Q,P](z)Vϕk [Q,P]ϕm[Q,P](z) dz = λn,k(W )δn,m.

The eigenvalues are

λn,k(W ) = (2π)d
k!

n!
π|n−k|

∫
W

r2n−2k+1e−π|r |2

 d∏
j=1

L
nj−kj
kj

(πr2
j )

2

dr .
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Daubechies’ theorem for Hagedorn wavepackets

Proposition (Cohen’s class formulation) (S.)
The Hagedorn wavepackets {ϕn[Q,P]}n∈Nd

0
are the successive

maximizers of the localization problem

max
f ∈L2(Rd ),∥f ∥2=1

∫
T (Ω)

∣∣Vϕk [Q,P]f (z)
∣∣2 dz .

The successive maxima are

λn,k(W ) = (2π)d
k!

n!
π|n−k|

∫
W

r2n−2k+1e−π|r |2

 d∏
j=1

L
nj−kj
kj

(πr2
j )

2

dr .
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Mixed-state localization operators with Hagedorn
eigenfunctions

▶ Daubechies’ theorem for pure states carries over to any S on the
form S =

∑
n∈Nd

0
αnϕn[Q,P]⊗ ϕn[Q,P], α ∈ ℓ1(Nd

0 ).
▶ Hard condition to verify.
▶ Even if we can verify it, the eigenvalue expressions are in general

not too nice.
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Quantum double orthogonality

Proposition (S.)
Let Ω ⊂ R2d be thin at infinity, and S ∈ B(L2(Rd)) a trace class operator.
The collection {ψn}n∈Nd

0
is the eigenfunctions of the mixed-state

localization operator χΩ ⋆ S if and only if it is complete and satisfies the
relations ∫

R2d
QS (ψn, ψm) (z) dz = bnδn,m

and ∫
Ω
QS (ψn, ψm) (z) dz = λnδn,m.
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Examples

▶ S = h ⊗ h: Qh⊗h(f , g)(z) = Vhf (z)Vhg(z),∫
Ω
Vhf (z)Vhg(z) dz = λnδn,m.

▶ S ≥ 0: QS(f , g)(z) = ⟨
√
Sπ(z)∗f ,

√
Sπ(z)∗g⟩,∫

Ω
⟨
√
Sπ(z)∗f ,

√
Sπ(z)∗g⟩ dz = λnδn,m.

▶ S = 2dP : Q2dP(f , g) = W (f , g)(z),∫
Ω
W (f , g) dz = λnδn,m.
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Polyradial operators

Definition
An operator S : S(Rd) → S ′(Rd) is called polyradial if FW (S) is a
polyradial function. That is, there is a function F0 : Rd

+ → C such that

FW (S)(z) = F0(|z1|, |z2|, . . . , |zd |).

Examples
▶ ϕn ⊗ ϕn: FW (ϕn ⊗ ϕn)(z) =

∏d
j=1 L

0
n(π|zj |2)e−π|zj |2 .

▶ 2dP : FW (2dP)(z) = 1.

▶ Lf (t) = 1
2

(
t2f (t)− f ′′(t)

4π

)
: FW (L)(z) = − 1

8π2∆δ(z).

▶ Polyradial Hilbert-Schmidt operators ∼= L2(Rd
+).
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Quantum double orthogonality for polyradial operators
Proposition (S.)
Let S ∈ T 1(L2(Rd)) be polyradial. The Hermite functions {ϕn}n∈Nd

0
are

quantum doubly orthogonal on any Reinhardt domain Ω that is thin at
infinity. That is, we have∫

Ω
QS(ϕn, ϕm)(z) dz = λn,S(W )δn,m =

∫
Ω
FσFW (S) ∗W (ϕn)(z) dz δn,m,

whereW is the Reinhardt shadow.
▶ So the Hermite functions are the eigenfunctions of χΩ ⋆ S , and the

eigenvalues are λn,S(W ).
▶ They are also the maximizers and maxima of

max
f ∈L2(Rd ),∥f ∥2=1

∫
Ω
QS(f )(z) dz .
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Hagedorn wavepackets as solutions

Corollary
Let T ∈ R2d×2d be a symplectic matrix with block form T =

(
A B
C D

)
.

Let R ∈ T 1(L2(Rd)) be polyradial, and let S be a trace class operator
with Weyl symbol FσFW (R)(T−1z). If Q = A+ iB,P = C + iD then the
Hagedorn wavepackets {ϕn[Q,P]}n∈Nd

0
are quantum doubly orthogonal

on any domain on the form T (Ω), where Ω is a Reinhardt domain. That
is, we have ∫

T (Ω)
QS(ϕn[Q,P], ϕm[Q,P])(z) dz = λn,R(W )δn,m.
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Application: Gaussian Cohen’s classes

▶ LetM ∈ R2d×2d be positive and symmetric. The Gaussian

gM(z) = (2π)−ddet(M−1)e−
1
2 ⟨M

−1z,z⟩

has a positive, trace class Weyl transform if and only if the matrix

M +
i

4π

(
0 Idd

−Idd 0

)
is positive semidefinite.

▶ Among the admissibleM , only those on the form

M =

(
M̃ 0
0 M̃

)
,M = diag(m1,m2, . . . ,md) are polyradial.
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Gaussian Cohen’s classes

▶ Williamson’s theorem: M = SKST = S

(
K̃ 0
0 K̃

)
ST , where

S ∈ R2d×2d is symplectic, and all ki are positive.
▶ So for any admissibleM we have gM(z) = gK (S

−1z).
▶ Our main theorem holds for the mixed-state localization operator
χS(Ω) ⋆ LgM !

▶ The eigenfunctions are {ϕn[Q,P]}n∈Nd
0
, where Q = A+ iB ,

P = C + iD , and the eigenvalues are∫
Ω
gK ⋆W (ϕn)(z) dz .
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Gaussian Cohen’s classes

Corollary
LetM = STKS ∈ R2d×2d be admissible, and let Ω ⊂ R2d be a Reinhardt
domain that is thin at infinity. Then the Hagedorn wavepackets are the
successive maximizers of the localization problem

max
f ∈L2(Rd ),∥f ∥2=1

∫
S(Ω)

(gM ∗W (f )) (z) dz .

The successive maxima are

λn =

∫
Ω
(gK ∗W (ϕn)) (z) dz .
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Thank you!
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