Hagedorn states and the
localization problem for Cohen’s
class

Erling Svela
Workshop on Quantum Harmonic Analysis, Hannover
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The Wigner distribution

> Given f € L?(RY) we define the Wigner distribution by

t

WF)(z) = W) x.w) = [ Flx+ D)F0x— D)e 2700

» The cross- Wigner distribution is defined by

fRd 5g(x—%)e —2mi(tw) o
> Marglnal propertles.

fRd W(f)(x,w) dx = |f(w)|2, f]Rd f)(x,w) dw = |f(x )|2
» However, the Wigner function is in general not positive!




Cohen'’s class distributions

» Solution: Convolve with a nice function ¢ € S’'(R?9).
» Cohen’s class: {Q(f) =W(f)*xo0:0¢€ S’(de)}.

» Contains all weakly continuous, covariant quadratic time-frequency
representations.

Q(m(20)f)(2) = Q(F)(z — 20), [Q(F,&)(0)] < [|f]l2]g]l2-




The localization problem for Cohen’s class

> Given aset Q c R?? and a @ in Cohen's class, find a signal in L2(R9)
with || ]2 = 1 that maximizes

/Q Q(f) dz.

» The choice o(z) = Amb(g)(z) = €™ V,g(z) =
emixw) [, g(t)g(t — x)e 2" %@ dz, for g € L?(R?) gives the
spectrogram: Q,(z) = |Vzf(2)|°.

» Spectrogram localization problem: Maximize

/vagf(z)|2 dz.




Cohen’s class from the QHA viewpoint

Time-frequency shift: 7(z)f(t) = m(x,w)f(t) = f(t — x)e2™ (1),
Parity operator: Pf(t) = f(—t).

Operator shift: a,(S) = n(z)S7(z)*.

Operator inversion § = PSP.

Function-operator convolution: f « S = [, f(2)a(S) dz
Operator-operator convolution: S« T(z) = tr(5a2(7v'))
Fourier-Wigner transform: Fy/(S)(z) = e ™) tr(n(—

vVvyVvyVvyYvyyvyy

z)S5).




Cohen'’s class as convolutions

Proposition (Luef-Skrettingland, 2019)
For ¢ € S'(R?9), its Cohen'’s class distribution is given by

Q¢(f) = (f & f) * L¢,

where (f @ f)(g) = (g, f)f and L, is the Weyl transform, the operator
defined weakly by

(Lyf,g) = (¢, W(f,g))-

> So any operator S with Schwartz kernel defines a Cohen'’s class
distribution via the formula

Qs(f) = (f® f)x S.




A general solution

Lemma (Luef-Skrettingland, 2019)

Let Q ¢ R?? be measurable, and let S be an operator such that the
operator xq * S is compact. Let A; > X\, > ... denote its positive
eigenvalues in decreasing order, and let f; be the eigenfunction
corresponding to \;. Then the eigenfunctions solve the localization
problem in the sense that

A —/QS dz—max{/ Qs(f)(z)dz: f L{f,f.. 1}}

» So we can solve the localization problem by solving the eigenvalue
problem for the convolution xq x S.




Another look at the spectrogram localization problem

> The case S = g @ g gives Qs(f)(z) = |V, f(2)[°.
» The corresponding convolution xq * (g ® g) gives a localization
operator:

XQ*(g®g)f:/ Vef(2)m(z)g dz = ASf.
Q




Daubechies’ theorem

Theorem (Daubechies, 1988)

Let g be the Gaussian ¢g = 21/4e=mt* and D a disc of radius R centered
at 0. The eigenfunctions of the localization operator A‘,f-’,‘; are the
Hermite functions:

21/4 1 " Tt2 d" — 272
0= 7 (o) e

The corresponding eigenvalue is

TR2 _n
rr
Ap = —e " dr.
0 nl




A first extension

Theorem (Abreu-Gréchenig-Romero,2019,)

Let Dr be a disc of radius R centered at 0, and let k € Np. The
eigenfunctions of the localization operator A‘EkR are the Hermite
functions: {¢,}nen, The corresponding eigenvalues are

k! mR2

An = rnkemr <LZ*"(r))2 dr.

n! 0

The Laguerre polynomials are given by

k |
arey VK k+« ti
5o =30 ()5

J




B Reinhardt domains

NTNU » The higher-dimensional condition on Q is that xq is polyradial, that
is

XQ(X17X27 sy Xd, W1, W2, ... ,(.Ud) = FO(‘Z]-’7 ‘Z2|7 R ‘Zd|)‘

» These are the Reinhardt domains.
» Qis Reinhardt if there is a W C RY such that

z€Q <= (lzil, ||, .-|z4]) € W.
» Qs thin at infinity if for all R > 0,

lim [QNB(z,R)| =0.

|z| =00



B An unbounded set that is thin at infinity

NTNU

Figure: The set {(x,w) € R?: |x*/3 — y?| < 1}.



Reinhardt domains in R*
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Daubechies’ theorem for Hermite functions, higher
dimensions

Proposition
Let Q c R?? be a Reinhardt domain with shadow W, and assume that Q
is thin at infinity. Let k € N¢. The eigenfunctions of the localization

operator Af-’zk are the Hermite functions, {qs,,}neNg and the
corresponding eigenvalues are

2
d
k! ke
An k(W) = (27r)dm7r|"*k| /W p2n—2k+1 g=mr|? (H LZj k’(wrf)) dr.
. =




Double orthogonality

> The eigenfunctions {f,} of a localization operator AZ can be
characterized via double orthogonality, that is, the satisfaction of the
two requirements

/ V, £o(2)VaFn(2) d2 = S
]de
and
/ ng,,(z) ngm(z) dz = XpOn,m-
Q

» From Daubechies’ theorem we have the double orthogonality
relation for Hermite functions over Reinhardt domains:

[ Vi@ Virm) oz = s W)
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B Hagedorn wavepackets

» The ladder operators: ALf(t) = /mtyf(t) — 2%37( ) generate the
Hermite functions via ¢, = ﬁ (AD)" go.

» Lagrangian frame: Q, P € Gl(d, C) such that
QTP-PTQ=0QP-PQ=2ildy.

Re(Q) Im(Q)
Re(P) Im(P)
> Generalized Gaussian: ¢o[Q, P](t) = 29/4det(Q)1/2e™(t:PR™ 1)

» Equivalentto T = ( ) being symplectic.



B Hagedorn wavepackets

NTNU

> Generalized ladder operators: AT[Q, P] = /7i (P* -t + Q* (%%)).
» The k-th component acts by

AL[Q Plf(t) (Zplktlf q/kg:( ))

» The Hagedorn wavepackets: ¢,[Q, P] = (AT[Q P)" ¢o[@, P].
» Inherits several properties of the Hermlte funct|ons.
Orthonormality, three-term recurrence, Laguerre connection.

> Q =Idy, P = ild4 gives the Hermite functions, Q, iP real gives
rotated and dilated Hermite functions.



Hagedorn wavepackets in phase space

Lemma (Lasser-Troppmann, 2014,)
Let k,n € N¢, let [Q, P] be a Lagrangian frame and T the corresponding
symplectic matrix. We have

d

—mi(xw) —Z|¢? TN

Vii(@,P1nl Q. Pl(x,w) = e ™) e 2K TT H,,  (()),
j=1

where ¢ = ((x,w) = —iPTx +iQTw = T"1 <::> ,and H, , is the
corresponding complex Hermite polynomial.
> So |V¢>k[Q,P]¢n[Q7 'D](X7w)’ = |V¢k¢n(T_1(X7W))‘!




B Daubechies’ theorem for Hagedorn wavepackets

Proposition (S.)

Let Q be a Reinhardt domain that is thin at infinity. Let [Q, P] be a
Lagrangian frame, T the corresponding symplectic matrix and let
k € Ng.

The Hagedorn wavepackets {¢,[Q, P]}neNg satisfy the double
orthogonality condition

/| o Vor1@ 16010 PRIV 16n1Q: PIE) b = i (W)

The eigenvalues are

2
d
k! ni—ki
Ank(W) = (27r)dmﬂ|”_k| /W p2n—2k+1g=|r? (H Ly kj(”jz)) dr.
! o




Daubechies’ theorem for Hagedorn wavepackets

Proposition (Cohen’s class formulation) (S.)
The Hagedorn wavepackets {¢,[Q, P]}neNg are the successive
maximizers of the localization problem

2
max vV f(z dz.
feLZ(Rd),||f||2=1/T(m| o f(2)

The successive maxima are

2
d
k! ni—k;
)\n,k(W) _ (27T)dm7r|n—k| /W r2n—2k+le—7r\r|2 (H Lk; kj (7”,]2)) dr.
! i1




Mixed-state localization operators with Hagedorn
B eigenfunctions

NTNU

» Daubechies’ theorem for pure states carries over to any S on the
form S =37 cng andnlQ, Pl ® 64[Q, P], a € £1(NG).
» Hard condition to verify.

> Even if we can verify it, the eigenvalue expressions are in general
not too nice.




Quantum double orthogonality

Proposition (S.)

Let Q ¢ R?? be thin at infinity, and S € B(L?(RY)) a trace class operator.
The collection Wn}neNg is the eigenfunctions of the mixed-state
localization operator xq « S if and only if it is complete and satisfies the
relations

/R Qs (4, Um) (2) dz = bodnm
and

/Q Qs (tn, ¥m) (2) dz = Anbim.




B Examples o

NTNU > S=hoh Quen(f,g)(z) = Vaf(z)Vig(2),

Vhf(Z) th(Z) dz = )\nén,m-
Q

> S>0: Qs(f,g)(z) = (VSn(2)*f,V/Sn(2)*g),
/Q(\/gﬂ'(z)*f, \/§7T(Z)*g> dz = )\n(sn,m-
> S=29P: Qup(f,g) = W(f,g)(2),

/ W(f,g) dz = Apbn m-
Q



B Polyradial operators

NTNU
Definition

An operator S : S(RY) — S'(RY) is called polyradial if Fiy/(S)is a
polyradial function. That is, there is a function Fo : R — C such that

Fw(S)(z) = Fo(l|z1l, |z2l, - - -, |zdl)-

Examples
> 60 ® bl Fiw(én ® 60)(2) = [, LS(lz[?)e
> 29P: Fiy(29P)(z) = 1.
> LF(t) =1 (t2f(t) - fTSf)) Fu(L)(2) = —5208(2).
» Polyradial Hilbert-Schmidt operators = L2(RY).

| 2



Quantum double orthogonality for polyradial operators

Proposition (S.)
Let S € T(L?(RY)) be polyradial. The Hermite functions {¢>,,}n€Ng are

quantum doubly orthogonal on any Reinhardt domain Q that is thin at
infinity. That is, we have

/ Qs(6ns 6m)(2) dz = An.s(W)nm = / FoFu(S) * W(n)(2) dz 6mm,
Q Q

where W is the Reinhardt shadow.

» So the Hermite functions are the eigenfunctions of yq x S, and the
eigenvalues are A, s(W).

» They are also the maximizers and maxima of

f)(z) dz.
FeL2(R9), | la=1 /QQS( )(2) dz




B Hagedorn wavepackets as solutions

NTNU

Corollary

Let T € R?9*24 pe a symplectic matrix with block form T = ('g g) :

Let R € TY(L2(RY)) be polyradial, and let S be a trace class operator
with Weyl symbol F, Fy (R)(T1z). If Q= A+ iB,P = C +iD then the
Hagedorn wavepackets {¢,[Q, P]}neNg are quantum doubly orthogonal
on any domain on the form T(Q), where Q is a Reinhardt domain. That
is, we have

/ Qs(¢a[Q, P1, 6m[Q, P1)(2) dz = An o (W) m.
T(Q)



Application: Gaussian Cohen'’s classes

> Let M € R29%29 pe positive and symmetric. The Gaussian
gm(z) = (27) " Idet(M1)e (M 122)
has a positive, trace class Weyl transform if and only if the matrix
v (a7
is positive semidefinite.
» Among the admissible M, only those on the form

M= <Aoﬂ I\%) , M = diag(my, m, ..., mg) are polyradial.




Gaussian Cohen’s classes

» Williamson’'s theorem: M = SKST = § <g ;%) ST, where
S € R?24*2d js symplectic, and all k; are positive.

» So for any admissible M we have gy (z) = gk(S~1z).

» Our main theorem holds for the mixed-state localization operator
Xs(Q) * Lgy!

» The eigenfunctions are {¢,[Q, P]}neNg, where Q = A+ iB,
P = C +iD, and the eigenvalues are

/ g% W(6n)(2) dz.
Q




B Gaussian Cohen’s classes

NTNU

Corollary

Let M = STKS € R?9*2d pe admissible, and let Q ¢ R?? be a Reinhardt
domain that is thin at infinity. Then the Hagedorn wavepackets are the
successive maximizers of the localization problem

max * W(F)) (z) dz.
feLZ(Rd),an:l/s(m (g x W) (2)

The successive maxima are

Mo = /Q (g * W(6n)) (2) dz.



Thank you!
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